A long-term experiment was set up in Yingtan of Jiangxi Province to investigate the effects of long-term application of inorganic fertilizers on the biochemical properties of a rice-planting soil derived from Quaterna...A long-term experiment was set up in Yingtan of Jiangxi Province to investigate the effects of long-term application of inorganic fertilizers on the biochemical properties of a rice-planting soil derived from Quaternary red earth. Noncultivated soils are extremely eroded and characterized by a low pH and deficiencies in available nutrients, in particular P and N. After 13 years of inorganic fertilization in cultivation for double-cropped rice, the biochemical properties of the soil were changed. The nitrification potential and urease activity were higher in the treatments with N application than those without N application, Acid phosphatase activity and dehydrogenase activity were also higher in the treatments with P application than in those without P application. The dehydrogenase activity correlated well with the concentrations of both total P and hydrolysable N and with rice crop yield, suggesting that dehydrogenase activity might be a suitable indicator for improvement in soil fertility.展开更多
To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain, a laboratory incubation at different temperatures and soil moistures were carried out using...To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain, a laboratory incubation at different temperatures and soil moistures were carried out using soils treated with organic manure (OM), half organic manure plus half fertilizer N (HOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (NK) and control (CK) since 1989. Cumulative N2O emission in OM soil during the 17 d incubation period was slightly higher than in NPK soil under optimum nitrification conditions (25℃ and 60% water-filled pore space, WFPS), but more than twice under the optimum denitrification conditions (35℃ and 90% WFPS). N2O produced by denitrification was 2.1-2.3 times greater than that by nitrification in OM and HOM soils, but only 1.5 times greater in NPK and NP soils. These results implied that the long-term amendment of organic manure could significantly increase the N2O emission via denitrification in OM soil as compared to NPK soil. This is quite different from field measurement between OM soil and NPK soil. Substantial inhibition of the formation of anaerobic environment for denitrification in field might result in no marked difference in N2O emission between OM and NPK soils. This is due in part to more rapid oxygen diffusion in coarse textured soils than consumption by aerobic microbes until WFPS was 75% and to low easily decomposed organic C of organic manure. This finding suggested that addition of organic manure in the tested sandy loam might be a good management option since it seldom caused a burst of N2O emission but sequestered atmospheric C and maintained efficiently applied N in soil.展开更多
Methane fluxes from late rice and single cropping rice fields in Taihu region were measured using closedchamber method in 1992 and 1993 and CH_4 emission from this region (total area of paddy soils was about1.88 milli...Methane fluxes from late rice and single cropping rice fields in Taihu region were measured using closedchamber method in 1992 and 1993 and CH_4 emission from this region (total area of paddy soils was about1.88 million hectares, of which 0.63 million hectares are distributed in the south of Jiangsu Province) wasestimated on the basis of the mean CH_4 fluxes observed. The results showed that the mean CH_4 flaxes fromlate rice and single cropping rice field were quite similar under the prevailing cultivation practices in theregion, being around 5 mg CH_4/m ̄2/h (4.31-5.31 mg CH_4/m ̄2/h for various cultivars of the late rice and3.20-6.22 mg CH_4/m ̄2/h for various treatments of the single cropping rice). Total CH_4 emission from paddysoils in the region was estimated to be 0.185-0.359 Tg CH_4 per year. Continuously flooding the soil witha water layer till ripening caused higher mean CH_4 flux; and addition of nitrification inhibitor (thiourea)stimulated CH_4 emission. There was no simple relationship between CH_4 flux and either soil temperature orsoil Eh.展开更多
Soil respiration induced by soybean cultivation over its entire growing season and the factors influencing soil respiration were investigated to examine the seasonal pattern of soil respiration induced by soybean cult...Soil respiration induced by soybean cultivation over its entire growing season and the factors influencing soil respiration were investigated to examine the seasonal pattern of soil respiration induced by soybean cultivation, explore soybean growth and photosynthesis on soil respiration, and determine the temperature dependence on soil respiration. Soil respiration in a pot experiment with and without soybean plants was sampled using the static chamber method and measured using gas chromatograph. Air temperature was a dominant factor controlling soil respiration rate in unplanted soil. Additionally, rhizosphere respiration comprised 62% to 98% of the soil respiration rate in the soybean-planted soil varying with the soybean growth stages. Harvesting aerial parts of soybean plant caused an immediate drop in the soil respiration rate at that stage. After harvesting the aerial parts of the soybean plant, a highly significant correlation between soil respiration rate and air temperature was found at the flowering stage (P 〈 0.01), the pod stage (P 〈 0.01), and the seed-filling stage (P 〈 0.05). Thus, rhizosphere respiration during the soybean-growing period not only made a great contribution to soil respiration, but also determined the seasonal variation pattern of the soll respiration rate.展开更多
Winter wheat and rice straw produced under ambient and elevated CO2 in a China rice-wheat rotation free-air CO2 enrichment (FACE) experiment was mixed with a paddy soil at a rate of 10 g kg^-1 (air-dried), and the...Winter wheat and rice straw produced under ambient and elevated CO2 in a China rice-wheat rotation free-air CO2 enrichment (FACE) experiment was mixed with a paddy soil at a rate of 10 g kg^-1 (air-dried), and the mixture was incubated under flooded conditions at 25℃ to examine the differences in decomposition as well as the products of crop residues produced under elevated CO2. Results showed that the C/N ratio and the amount of soluble fraction in the amended rice straw grown under elevated CO2 (FR) were 9.8% and 73.1% greater, and the cellulose and lignin were 16.0% and 9.9% lesser than those of the amended rice straw grown under ambient CO2 (AR), respectively. Compared with those of the AR treatment, the CO2-C and CH4-C emissions in the FR treatment for 25 d were increased by 7.9% and 25.0%, respectively; a higher ratio of CH4 to CO2 emissions induced by straw in the FR treatment was also observed. In contrast, in the treatments with winter wheat straw, the CO2-C and CH4-C emissions, the ratio of straw-induced CH4 to CO2 emissions, and the straw composition were not significantly affected by elevated CO2, except for an 8.0% decrease in total N and a 9.7% increase in C/N ratio in the wheat straw grown under elevated CO2. Correlation analysis showed that the net CO2-C and CH4-C emission from straw and the ratio of straw-induced CH4 to CO2 emissions were all exponentially related to the amount of soluble fraction in the amended straw (P 〈0.05). These indicated that under flooded conditions, the turnover and CH4 emission from crop straw incorporated into soil were dependent on the effect of elevated CO2 on straw composition, and varied with crop species. Incorporation of rice straw grown under elevated CO2 would stimulate CH4 emission from flooded rice fields, whereas winter wheat straw grown under elevated CO2 had no effect on CH4 emission.展开更多
Application of fertilizer has been found to significantly affect soil N cycling. However, a comprehensive understanding of the effects of long-term fertilization on soil gross N transformation rates is still lacking. ...Application of fertilizer has been found to significantly affect soil N cycling. However, a comprehensive understanding of the effects of long-term fertilization on soil gross N transformation rates is still lacking. We compiled data of observations from 10 long-term fertilization experiments and conducted a meta-analysis of the effects of long-term fertilization on soil gross N transformation rates. The results showed that if chemical fertilizers of N, P and K were applied in balance, soil p H decreased very slightly. There was a significantly positive effect of long-term fertilization, either chemical or organic fertilizers or their combinations, on gross N mineralization rate compared to the control treatment(the mean effect size ranged from 1.21 to 1.25 at 95% confidence intervals(CI) with a mean of 1.23), mainly due to the increasing soil total N content. The long-term application of organic fertilizer alone and combining organic and chemical fertilizer could increase the mineralization-immobilization turnover, thus enhance available N for plant while reduce N losses potential compared to the control treatment. However, long-term chemical fertilizer application did not significantly affect the gross NH4+ immobilization rate, but accelerated gross nitrification rate(1.19; 95% CI: 1.08 to 1.31). Thus, long-term chemical fertilizer alone would probably induce higher N losses potential through NO3– leaching and runoff than organic fertilizer application compared to the control treatment. Therefore, in the view of the effects of long-term fertilization on gross N transformation rates, it also supports that organic fertilizer alone or combination of organic and chemical fertilizer could not only improve crop yield, but also increase soil fertility and reduce the N losses potential.展开更多
Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFQM, respectively) have been made, little information is available in relation to the rel...Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFQM, respectively) have been made, little information is available in relation to the relationship between LFQM and HFOM, and no attempts have been made to quantify a general relationship between LFQM and HFQM for agricultural soils under field condition. Qur hypothesis is there may be an inherent relationship between LFQM and HFQM for agricultural soils under certain unaltered management practices for a long period, to this end, we therefore studied typically soils taken from different parts in China by using a simple density fractionation procedure. The results indicated that LFQM was positively correlated with LFOM/HFOM ratio for three typical soils. This information will be of particular use not only in deepening our understanding of the dynamics of SQM fractions but also in evaluating the potential of agricultural soils to sequestrate C under different management practices in a long term.展开更多
Due to continuous decreases in arable land area and continuous population increases,Chinese soil scientists face great challenges in meeting food demands,mitigating adverse environmental impacts,and sustaining or enha...Due to continuous decreases in arable land area and continuous population increases,Chinese soil scientists face great challenges in meeting food demands,mitigating adverse environmental impacts,and sustaining or enhancing soil productivity under intensive agriculture.With the aim of promoting the application of soil science knowledge,this paper reviews the achievements of Chinese scientists in soil resource use and management,soil fertility,global change mitigation and soil biology over the last 30 years.During this period,soil resource science has provided essential support for the use and exploitation of Chinese soil resources,and has itself developed through introduction of new theories such as Soil Taxonomy and new technologies such as remote sensing.Soil fertility science has contributed to the alleviation and elimination of impeding physical and chemical factors that constrain availability of essential nutrients and water in soils,the understanding of nutrient cycling in agroecosystems,and the increase in nutrient use efficiency for sustainable crop production.Chinese soil scientists have contributed to the understanding of the cropland's role in global change,particularly to the understanding of methane and nitrous oxide emission from rice fields and the effect of elevated carbon dioxide and ozone on rice-wheat system.Soil biology research has progressed in biological N fixation,distribution of fauna in Chinese soils,and bioremediation of polluted soils.A new generation of soil scientists has arisen in the last three decades.The gaps between research and application in these soil science fields are also discussed.展开更多
CH4 emission and the concentration of dissolved CH4 in soil solution and floodwater in a rice field and their stable carbon isotopic signatures as affected by straw application were investigated in 2009 in a field exp...CH4 emission and the concentration of dissolved CH4 in soil solution and floodwater in a rice field and their stable carbon isotopic signatures as affected by straw application were investigated in 2009 in a field experiment at Jurong, Jiangsu Province, China. Straw application increased CH4 emission and CH4 concentration in the soil solution and floodwater. A positive seasonal correlation was also observed in the variation between CH4 flux and CH4 concentration in soil solution. The seasonal total CH4 emission (51.6 g CH4 m^-2) in Treatment WS (straw applied) was about 168% higher than that in Treatment CK (without straw). The emitted CH4 and CH4 in soil solution were initially relatively enriched, then depleted and finally enriched again in 13C in both treatments, while CH4 in floodwater became isotopically heavier. The carbon isotopic signature of emitted CH4 and CH4 in floodwater averaged around -62%o and -45%0 for both treatments, respectively, and was not significantly influenced by the application of straw. However, straw application caused the CH4 in soil solution to be significantly depleted in lac during the middle of the rice season, and the mean δ13C value was lower in WS (-57.5‰) than in CK (-49.9‰). Calculation from the isotopic data showed that straw application increased the fraction of CH4 oxidized, causing no significant difference in the δ13C value of the emitted CH4 between the two treatments.展开更多
To analyze the effect of agricultural activity on nitrogen(N) budget at the watershed scale,a comparative study was conducted at two Japanese watersheds,the Shibetsu River watershed(SRW) and Upper-Naka River watershed...To analyze the effect of agricultural activity on nitrogen(N) budget at the watershed scale,a comparative study was conducted at two Japanese watersheds,the Shibetsu River watershed(SRW) and Upper-Naka River watershed(UNRW),and one Chinese watershed,the Jurong Reservoir watershed(JRW).The total area and the proportion of agricultural area(in parentheses) of the watersheds were 685(51%),1 299(21%),and 46 km 2(55%) for SRW,UNRW,and JRW,respectively.The main agricultural land use in SRW was forage grassland,while paddy fields occupied the highest proportion of cropland in UNRW(11% of total area) and JRW(31% of total area).The farmland surplus N was 61,48,and 205 kg N ha 1 year 1 for SRW,UNRW,and JRW,respectively.The total input and output for the whole watershed were 89 and 76,83 and 61,and 353 and 176 kg N ha 1 year 1 for SRW,UNRW,and JRW,respectively.The proportion of discharged N to net anthropogenic N input was 31%,37%,and 1.7% for SRW,UNRW,and JRW,respectively.The two watersheds in Japan showed similar proportions of discharged N to those of previous reports,while the watershed in China(JRW) showed a totally different characteristic compared to previous studies.The high N input in JRW did not increase the amount of discharged N at the outlet of the watershed due to high proportions of paddy fields and water bodies,which was an underestimated N sink at the landscape scale.展开更多
基金the National Natural Science Foundation of China (No.40471065)the Open Fund of the State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences (No.055122).
文摘A long-term experiment was set up in Yingtan of Jiangxi Province to investigate the effects of long-term application of inorganic fertilizers on the biochemical properties of a rice-planting soil derived from Quaternary red earth. Noncultivated soils are extremely eroded and characterized by a low pH and deficiencies in available nutrients, in particular P and N. After 13 years of inorganic fertilization in cultivation for double-cropped rice, the biochemical properties of the soil were changed. The nitrification potential and urease activity were higher in the treatments with N application than those without N application, Acid phosphatase activity and dehydrogenase activity were also higher in the treatments with P application than in those without P application. The dehydrogenase activity correlated well with the concentrations of both total P and hydrolysable N and with rice crop yield, suggesting that dehydrogenase activity might be a suitable indicator for improvement in soil fertility.
基金Project supported by the National Natural Science Foundation of China (No. 40331014)the National Basic Research Program (973) of China (2005CB121101)the Hundred Talents Project of Chinese Academy of Sciences.
文摘To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain, a laboratory incubation at different temperatures and soil moistures were carried out using soils treated with organic manure (OM), half organic manure plus half fertilizer N (HOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (NK) and control (CK) since 1989. Cumulative N2O emission in OM soil during the 17 d incubation period was slightly higher than in NPK soil under optimum nitrification conditions (25℃ and 60% water-filled pore space, WFPS), but more than twice under the optimum denitrification conditions (35℃ and 90% WFPS). N2O produced by denitrification was 2.1-2.3 times greater than that by nitrification in OM and HOM soils, but only 1.5 times greater in NPK and NP soils. These results implied that the long-term amendment of organic manure could significantly increase the N2O emission via denitrification in OM soil as compared to NPK soil. This is quite different from field measurement between OM soil and NPK soil. Substantial inhibition of the formation of anaerobic environment for denitrification in field might result in no marked difference in N2O emission between OM and NPK soils. This is due in part to more rapid oxygen diffusion in coarse textured soils than consumption by aerobic microbes until WFPS was 75% and to low easily decomposed organic C of organic manure. This finding suggested that addition of organic manure in the tested sandy loam might be a good management option since it seldom caused a burst of N2O emission but sequestered atmospheric C and maintained efficiently applied N in soil.
文摘Methane fluxes from late rice and single cropping rice fields in Taihu region were measured using closedchamber method in 1992 and 1993 and CH_4 emission from this region (total area of paddy soils was about1.88 million hectares, of which 0.63 million hectares are distributed in the south of Jiangsu Province) wasestimated on the basis of the mean CH_4 fluxes observed. The results showed that the mean CH_4 flaxes fromlate rice and single cropping rice field were quite similar under the prevailing cultivation practices in theregion, being around 5 mg CH_4/m ̄2/h (4.31-5.31 mg CH_4/m ̄2/h for various cultivars of the late rice and3.20-6.22 mg CH_4/m ̄2/h for various treatments of the single cropping rice). Total CH_4 emission from paddysoils in the region was estimated to be 0.185-0.359 Tg CH_4 per year. Continuously flooding the soil witha water layer till ripening caused higher mean CH_4 flux; and addition of nitrification inhibitor (thiourea)stimulated CH_4 emission. There was no simple relationship between CH_4 flux and either soil temperature orsoil Eh.
基金Project supported by the National Science Fund for Distinguished Young Scholars (No. 40125004)the KnowledgeInnovation Project of Chinese Academy of Sciences (No. KZCX1-SW-01-05).
文摘Soil respiration induced by soybean cultivation over its entire growing season and the factors influencing soil respiration were investigated to examine the seasonal pattern of soil respiration induced by soybean cultivation, explore soybean growth and photosynthesis on soil respiration, and determine the temperature dependence on soil respiration. Soil respiration in a pot experiment with and without soybean plants was sampled using the static chamber method and measured using gas chromatograph. Air temperature was a dominant factor controlling soil respiration rate in unplanted soil. Additionally, rhizosphere respiration comprised 62% to 98% of the soil respiration rate in the soybean-planted soil varying with the soybean growth stages. Harvesting aerial parts of soybean plant caused an immediate drop in the soil respiration rate at that stage. After harvesting the aerial parts of the soybean plant, a highly significant correlation between soil respiration rate and air temperature was found at the flowering stage (P 〈 0.01), the pod stage (P 〈 0.01), and the seed-filling stage (P 〈 0.05). Thus, rhizosphere respiration during the soybean-growing period not only made a great contribution to soil respiration, but also determined the seasonal variation pattern of the soll respiration rate.
基金Project supported by the National Natural Science Foundation of China (No.20377042)the Knowledge InnovationProgram of the Chinese Academy Sciences (No.KZCX2-408).
文摘Winter wheat and rice straw produced under ambient and elevated CO2 in a China rice-wheat rotation free-air CO2 enrichment (FACE) experiment was mixed with a paddy soil at a rate of 10 g kg^-1 (air-dried), and the mixture was incubated under flooded conditions at 25℃ to examine the differences in decomposition as well as the products of crop residues produced under elevated CO2. Results showed that the C/N ratio and the amount of soluble fraction in the amended rice straw grown under elevated CO2 (FR) were 9.8% and 73.1% greater, and the cellulose and lignin were 16.0% and 9.9% lesser than those of the amended rice straw grown under ambient CO2 (AR), respectively. Compared with those of the AR treatment, the CO2-C and CH4-C emissions in the FR treatment for 25 d were increased by 7.9% and 25.0%, respectively; a higher ratio of CH4 to CO2 emissions induced by straw in the FR treatment was also observed. In contrast, in the treatments with winter wheat straw, the CO2-C and CH4-C emissions, the ratio of straw-induced CH4 to CO2 emissions, and the straw composition were not significantly affected by elevated CO2, except for an 8.0% decrease in total N and a 9.7% increase in C/N ratio in the wheat straw grown under elevated CO2. Correlation analysis showed that the net CO2-C and CH4-C emission from straw and the ratio of straw-induced CH4 to CO2 emissions were all exponentially related to the amount of soluble fraction in the amended straw (P 〈0.05). These indicated that under flooded conditions, the turnover and CH4 emission from crop straw incorporated into soil were dependent on the effect of elevated CO2 on straw composition, and varied with crop species. Incorporation of rice straw grown under elevated CO2 would stimulate CH4 emission from flooded rice fields, whereas winter wheat straw grown under elevated CO2 had no effect on CH4 emission.
基金supported by the National Natural Science Foundation of China (41330744)the “973” Program of China (2014CB953803)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (164320H116)
文摘Application of fertilizer has been found to significantly affect soil N cycling. However, a comprehensive understanding of the effects of long-term fertilization on soil gross N transformation rates is still lacking. We compiled data of observations from 10 long-term fertilization experiments and conducted a meta-analysis of the effects of long-term fertilization on soil gross N transformation rates. The results showed that if chemical fertilizers of N, P and K were applied in balance, soil p H decreased very slightly. There was a significantly positive effect of long-term fertilization, either chemical or organic fertilizers or their combinations, on gross N mineralization rate compared to the control treatment(the mean effect size ranged from 1.21 to 1.25 at 95% confidence intervals(CI) with a mean of 1.23), mainly due to the increasing soil total N content. The long-term application of organic fertilizer alone and combining organic and chemical fertilizer could increase the mineralization-immobilization turnover, thus enhance available N for plant while reduce N losses potential compared to the control treatment. However, long-term chemical fertilizer application did not significantly affect the gross NH4+ immobilization rate, but accelerated gross nitrification rate(1.19; 95% CI: 1.08 to 1.31). Thus, long-term chemical fertilizer alone would probably induce higher N losses potential through NO3– leaching and runoff than organic fertilizer application compared to the control treatment. Therefore, in the view of the effects of long-term fertilization on gross N transformation rates, it also supports that organic fertilizer alone or combination of organic and chemical fertilizer could not only improve crop yield, but also increase soil fertility and reduce the N losses potential.
文摘Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFQM, respectively) have been made, little information is available in relation to the relationship between LFQM and HFOM, and no attempts have been made to quantify a general relationship between LFQM and HFQM for agricultural soils under field condition. Qur hypothesis is there may be an inherent relationship between LFQM and HFQM for agricultural soils under certain unaltered management practices for a long period, to this end, we therefore studied typically soils taken from different parts in China by using a simple density fractionation procedure. The results indicated that LFQM was positively correlated with LFOM/HFOM ratio for three typical soils. This information will be of particular use not only in deepening our understanding of the dynamics of SQM fractions but also in evaluating the potential of agricultural soils to sequestrate C under different management practices in a long term.
文摘Due to continuous decreases in arable land area and continuous population increases,Chinese soil scientists face great challenges in meeting food demands,mitigating adverse environmental impacts,and sustaining or enhancing soil productivity under intensive agriculture.With the aim of promoting the application of soil science knowledge,this paper reviews the achievements of Chinese scientists in soil resource use and management,soil fertility,global change mitigation and soil biology over the last 30 years.During this period,soil resource science has provided essential support for the use and exploitation of Chinese soil resources,and has itself developed through introduction of new theories such as Soil Taxonomy and new technologies such as remote sensing.Soil fertility science has contributed to the alleviation and elimination of impeding physical and chemical factors that constrain availability of essential nutrients and water in soils,the understanding of nutrient cycling in agroecosystems,and the increase in nutrient use efficiency for sustainable crop production.Chinese soil scientists have contributed to the understanding of the cropland's role in global change,particularly to the understanding of methane and nitrous oxide emission from rice fields and the effect of elevated carbon dioxide and ozone on rice-wheat system.Soil biology research has progressed in biological N fixation,distribution of fauna in Chinese soils,and bioremediation of polluted soils.A new generation of soil scientists has arisen in the last three decades.The gaps between research and application in these soil science fields are also discussed.
基金Supported by the National Natural Science Foundation of China (Nos. 40921061 and 41071169)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA05020200)
文摘CH4 emission and the concentration of dissolved CH4 in soil solution and floodwater in a rice field and their stable carbon isotopic signatures as affected by straw application were investigated in 2009 in a field experiment at Jurong, Jiangsu Province, China. Straw application increased CH4 emission and CH4 concentration in the soil solution and floodwater. A positive seasonal correlation was also observed in the variation between CH4 flux and CH4 concentration in soil solution. The seasonal total CH4 emission (51.6 g CH4 m^-2) in Treatment WS (straw applied) was about 168% higher than that in Treatment CK (without straw). The emitted CH4 and CH4 in soil solution were initially relatively enriched, then depleted and finally enriched again in 13C in both treatments, while CH4 in floodwater became isotopically heavier. The carbon isotopic signature of emitted CH4 and CH4 in floodwater averaged around -62%o and -45%0 for both treatments, respectively, and was not significantly influenced by the application of straw. However, straw application caused the CH4 in soil solution to be significantly depleted in lac during the middle of the rice season, and the mean δ13C value was lower in WS (-57.5‰) than in CK (-49.9‰). Calculation from the isotopic data showed that straw application increased the fraction of CH4 oxidized, causing no significant difference in the δ13C value of the emitted CH4 between the two treatments.
基金Supported by the Strategic International Cooperative Program "Comparative Study of Nitrogen Cycling and Its Impact on Water Quality in Agricultural Watersheds in Japan and China" by the Japan Science and Technology Agency and the National Natural Science Foundation of China(No.41071196)
文摘To analyze the effect of agricultural activity on nitrogen(N) budget at the watershed scale,a comparative study was conducted at two Japanese watersheds,the Shibetsu River watershed(SRW) and Upper-Naka River watershed(UNRW),and one Chinese watershed,the Jurong Reservoir watershed(JRW).The total area and the proportion of agricultural area(in parentheses) of the watersheds were 685(51%),1 299(21%),and 46 km 2(55%) for SRW,UNRW,and JRW,respectively.The main agricultural land use in SRW was forage grassland,while paddy fields occupied the highest proportion of cropland in UNRW(11% of total area) and JRW(31% of total area).The farmland surplus N was 61,48,and 205 kg N ha 1 year 1 for SRW,UNRW,and JRW,respectively.The total input and output for the whole watershed were 89 and 76,83 and 61,and 353 and 176 kg N ha 1 year 1 for SRW,UNRW,and JRW,respectively.The proportion of discharged N to net anthropogenic N input was 31%,37%,and 1.7% for SRW,UNRW,and JRW,respectively.The two watersheds in Japan showed similar proportions of discharged N to those of previous reports,while the watershed in China(JRW) showed a totally different characteristic compared to previous studies.The high N input in JRW did not increase the amount of discharged N at the outlet of the watershed due to high proportions of paddy fields and water bodies,which was an underestimated N sink at the landscape scale.