The key components of engineering machinery frequently failed due to working in the high load and high wear operating envir-onment.And the performance of the Fe-based alloy coatings typically employed need to be impro...The key components of engineering machinery frequently failed due to working in the high load and high wear operating envir-onment.And the performance of the Fe-based alloy coatings typically employed need to be improved for fulfilling the service requirements.Herein,a TiC strengthened Fe-based alloy cladding layer,named TiC-Fe coating,was designed and prepared by plasma cladding technology.The frictional wear performance of coating under various loads was tested.The wear morphology of the coating was observed,and its wear mechanism was examined.The results indicated that the TiC-Fe coating was well formed and metallurgically bonded to the Q345C substrate.Its microstructure mainly consisted of Fe-Cr solid solution,α-Fe phase,(Fe,Cr)_(7)C_(3) phase and TiC phase.The coating exhibited an average microhardness of 980 HV0.2,which was about 5.4 times that of the Q345C substrate.The wear mass loss of the TiC-Fe coatings was much smaller than that of the Q345C substrate,which indicated that the wear resistance of the Q345C coating was superior to the substrate,and the wear mechanism of the coating was mainly attributed to the abrasive wear.展开更多
High entropy alloys(HEAs)possess good mechanical properties and a wide range of industrial applications.In this paper,phase formation prediction theory,microstructure,properties and preparation methods of light-weight...High entropy alloys(HEAs)possess good mechanical properties and a wide range of industrial applications.In this paper,phase formation prediction theory,microstructure,properties and preparation methods of light-weight HEAs(LWHEAs)were reviewed.The problems and challenges faced by LWHEAs development were analyzed.The results showed that many aspects are still weak and require investigation for future advanced alloys,such as clarification of the role of entropy in phase formation and properties of HEAs,improved definition and different generations division of HEAs,close-packed hexagonal(HCP)phase structure prediction and corresponding alloy design and fabrication.Finally,some suggestions were presented in this paper including in-depth research on formation mechanism of multi-component alloy phase and strengthening of large-scale HEA preparation methods via technology compounding and 3D printing technology.Also,there is a need for more research on the in-situ preparation of HEA coatings and films,as well as developing LWHEAs with superior strength and elevated temperature resistance or ultra-low temperature resistance to meet the requirements of future engineering applications.展开更多
In order to solve the problem of wear-out-failure of diesel engine cylinder, the laser-quenching and low temperature ion sulfurizing complex surface treatment technology was operated on the surface of 42MnCr52 steel. ...In order to solve the problem of wear-out-failure of diesel engine cylinder, the laser-quenching and low temperature ion sulfurizing complex surface treatment technology was operated on the surface of 42MnCr52 steel. And the tribological properties of the complex layer were investigated. The experimental results indicated that the complex layer was composed of soft surface sulphide layer and sub-surface laser- quenching harden layer, and showed excellent friction-reduction and wear-resistance performance at high temperature. The synergistic effect of the complex layer resulted in 20% increase in hardness, 10% reduction in friction coefficient and 50% reduction in wear weight loss, respectively, compared with those of the standard samples. The bench-test further demonstrated that this technology can improve the lubricating condition between cylinder and piston ring, and reduce both abnormity wear when the lubricating oil is deficiency at the time of start-up and sticking wear at high temperature during the operating period, and then prolong the service life of engine.展开更多
采用堆焊熔敷成形技术进行了FV520B沉淀硬化不锈钢再制造实验,在此基础上,对FV520B不锈钢熔化极活性气体保护电弧焊(metal active gas arc welding,MAG)堆焊再制造成形组织特点进行了分析,并研究了机械振动对再制造成形组织的影响。结...采用堆焊熔敷成形技术进行了FV520B沉淀硬化不锈钢再制造实验,在此基础上,对FV520B不锈钢熔化极活性气体保护电弧焊(metal active gas arc welding,MAG)堆焊再制造成形组织特点进行了分析,并研究了机械振动对再制造成形组织的影响。结果显示:FV520B不锈钢MAG堆焊再制造成形组织由马氏体+碳化物沉淀硬化相组成,且沿成形高度方向组织呈周期性变化特点,具有一定的自相似分形特性;振动会一定程度上增大孪晶形成几率,对马氏体板条具有破断作用,且马氏体板条宽度随振动转速的不断增大呈先减小后增加趋势;受振动的影响,晶格畸变和各晶面择优取向性都将发生变化,但不同晶面变化规律不同;振动的加入使得(110)晶面和(211)晶面的Bragg衍射峰峰位向低衍射角方向发生偏移,且随振动转速的不断增大,偏移量呈先增大后减小趋势,(110)晶面衍射峰半高宽呈先减小后增大趋势,其晶面择优取向(TC)性则呈现先增强后减弱趋势;在0到共振转速区间内(211)晶面衍射峰半高宽随振动转速的不断增大呈先减小后增大趋势,当振动转速大于共振转速时又呈减小趋势,但其晶面择优取向(TC)性则随振动转速的增大呈现持续增强趋势;总体上,亚共振频率振动(振动转速f=3000r/min)对FV520B不锈钢MAG堆焊再制造成形组织结构的影响最显著。展开更多
基金supported by National Natural Science Foundation of China(No.52130509,92166105)the Science and Technology Innovation Program of Hunan Province(No.2021RC3096)145 project and Natural Science Foundation of Hunan Province(No.2023JJ30038).
文摘The key components of engineering machinery frequently failed due to working in the high load and high wear operating envir-onment.And the performance of the Fe-based alloy coatings typically employed need to be improved for fulfilling the service requirements.Herein,a TiC strengthened Fe-based alloy cladding layer,named TiC-Fe coating,was designed and prepared by plasma cladding technology.The frictional wear performance of coating under various loads was tested.The wear morphology of the coating was observed,and its wear mechanism was examined.The results indicated that the TiC-Fe coating was well formed and metallurgically bonded to the Q345C substrate.Its microstructure mainly consisted of Fe-Cr solid solution,α-Fe phase,(Fe,Cr)_(7)C_(3) phase and TiC phase.The coating exhibited an average microhardness of 980 HV0.2,which was about 5.4 times that of the Q345C substrate.The wear mass loss of the TiC-Fe coatings was much smaller than that of the Q345C substrate,which indicated that the wear resistance of the Q345C coating was superior to the substrate,and the wear mechanism of the coating was mainly attributed to the abrasive wear.
基金Funded by the National Natural Science Foundation of China(No.51405510)。
文摘High entropy alloys(HEAs)possess good mechanical properties and a wide range of industrial applications.In this paper,phase formation prediction theory,microstructure,properties and preparation methods of light-weight HEAs(LWHEAs)were reviewed.The problems and challenges faced by LWHEAs development were analyzed.The results showed that many aspects are still weak and require investigation for future advanced alloys,such as clarification of the role of entropy in phase formation and properties of HEAs,improved definition and different generations division of HEAs,close-packed hexagonal(HCP)phase structure prediction and corresponding alloy design and fabrication.Finally,some suggestions were presented in this paper including in-depth research on formation mechanism of multi-component alloy phase and strengthening of large-scale HEA preparation methods via technology compounding and 3D printing technology.Also,there is a need for more research on the in-situ preparation of HEA coatings and films,as well as developing LWHEAs with superior strength and elevated temperature resistance or ultra-low temperature resistance to meet the requirements of future engineering applications.
基金Funded by the National Natural Science Foundation of China(50901089)
文摘In order to solve the problem of wear-out-failure of diesel engine cylinder, the laser-quenching and low temperature ion sulfurizing complex surface treatment technology was operated on the surface of 42MnCr52 steel. And the tribological properties of the complex layer were investigated. The experimental results indicated that the complex layer was composed of soft surface sulphide layer and sub-surface laser- quenching harden layer, and showed excellent friction-reduction and wear-resistance performance at high temperature. The synergistic effect of the complex layer resulted in 20% increase in hardness, 10% reduction in friction coefficient and 50% reduction in wear weight loss, respectively, compared with those of the standard samples. The bench-test further demonstrated that this technology can improve the lubricating condition between cylinder and piston ring, and reduce both abnormity wear when the lubricating oil is deficiency at the time of start-up and sticking wear at high temperature during the operating period, and then prolong the service life of engine.
基金National Natural Science Foundation of China(51405510,51375492,51575527)
文摘采用堆焊熔敷成形技术进行了FV520B沉淀硬化不锈钢再制造实验,在此基础上,对FV520B不锈钢熔化极活性气体保护电弧焊(metal active gas arc welding,MAG)堆焊再制造成形组织特点进行了分析,并研究了机械振动对再制造成形组织的影响。结果显示:FV520B不锈钢MAG堆焊再制造成形组织由马氏体+碳化物沉淀硬化相组成,且沿成形高度方向组织呈周期性变化特点,具有一定的自相似分形特性;振动会一定程度上增大孪晶形成几率,对马氏体板条具有破断作用,且马氏体板条宽度随振动转速的不断增大呈先减小后增加趋势;受振动的影响,晶格畸变和各晶面择优取向性都将发生变化,但不同晶面变化规律不同;振动的加入使得(110)晶面和(211)晶面的Bragg衍射峰峰位向低衍射角方向发生偏移,且随振动转速的不断增大,偏移量呈先增大后减小趋势,(110)晶面衍射峰半高宽呈先减小后增大趋势,其晶面择优取向(TC)性则呈现先增强后减弱趋势;在0到共振转速区间内(211)晶面衍射峰半高宽随振动转速的不断增大呈先减小后增大趋势,当振动转速大于共振转速时又呈减小趋势,但其晶面择优取向(TC)性则随振动转速的增大呈现持续增强趋势;总体上,亚共振频率振动(振动转速f=3000r/min)对FV520B不锈钢MAG堆焊再制造成形组织结构的影响最显著。