期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
面向增材制造的数字孪生实施方法综述 被引量:4
1
作者 孟德状 杨伟东 +1 位作者 蔡子行 郭智 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1171-1188,共18页
增材制造以其全数字化加工方式可为数字孪生模型提供可靠的数据支撑;数字孪生有助于增材制造在设计、制造、服务等过程中充分发挥其不同于传统制造的优势,二者的结合在工业制造领域受到广泛关注。以总结数字孪生在增材制造中的实施方法... 增材制造以其全数字化加工方式可为数字孪生模型提供可靠的数据支撑;数字孪生有助于增材制造在设计、制造、服务等过程中充分发挥其不同于传统制造的优势,二者的结合在工业制造领域受到广泛关注。以总结数字孪生在增材制造中的实施方法为目的,介绍了数字孪生的概念和发展历程,分析了增材制造中实施数字孪生的关键技术;基于数字孪生对于增材制造全生命周期过程的应用潜力,从设计、制造、质量检测以及服务4个阶段阐述了国内外相关研究的方法和侧重点。展望了粘结剂喷射工艺中实施数字孪生的挑战,并提出了针对其的一种数字孪生技术路线。最后总结了增材制造中实现数字孪生存在的难题以及未来的发展方向。 展开更多
关键词 数字孪生 增材制造 工业4.0 人工智能 粘结剂喷射
下载PDF
基于图像不变特征深度学习的交通标志分类 被引量:14
2
作者 谢锦 蔡自兴 +1 位作者 邓海涛 盛艳 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第4期632-640,共9页
针对自然场景下所采集的交通标志存在各种形变,且手工设计提取交通标志不变特征方法需要处理技巧的问题,提出一种自动学习提取交通标志不变特征的道路交通标志分类方法.首先基于慢特征分析的深度学习框架自动学习得到每个阶段的特征映... 针对自然场景下所采集的交通标志存在各种形变,且手工设计提取交通标志不变特征方法需要处理技巧的问题,提出一种自动学习提取交通标志不变特征的道路交通标志分类方法.首先基于慢特征分析的深度学习框架自动学习得到每个阶段的特征映射矩阵;然后基于各阶段特征映射矩阵提取交通标志图像第一阶段特征和第二阶段特征,并将其联合输出作为交通标志的特征;最后使用支持向量机进行交通标志分类.实验结果表明,该方法具有良好的泛化能力,能有效地应用于交通标志分类,所提取的特征具有一定的平移不变和旋转不变性. 展开更多
关键词 不变特征 深度学习 交通标志分类 慢特征分析
下载PDF
智慧医疗临床应用与技术 被引量:3
3
作者 蔡自兴 蔡昱峰 《医学信息学杂志》 CAS 2021年第10期48-53,共6页
介绍人工智能临床医疗应用领域与主要成果,详细阐述相关人工智能技术发展及应用情况,提出建议,包括客观严谨地评估人工智能技术、更加关注政策支持及伦理问题、高度重视智慧型医生教育培养等。
关键词 人工智能 临床医学 智慧医疗 机器学习
下载PDF
Improved method for the feature extraction of laser scanner using genetic clustering 被引量:6
4
作者 Yu Jinxia cai zixing Duan Zhuohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期280-285,共6页
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b... Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated. 展开更多
关键词 laser scanner feature extraction weighted fuzzy clustering validation index genetic algorithm.
下载PDF
Multi-objective optimization sensor node scheduling for target tracking in wireless sensor network 被引量:1
5
作者 文莎 cai zixing Hu Xiaoqing 《High Technology Letters》 EI CAS 2014年第3期267-273,共7页
Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lif... Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency. 展开更多
关键词 wireless sensor network (WSN) target tracking sensor scheduling multi-objective optimization
下载PDF
TYPICAL STRUCTURES FOR LEARNING CONTROL
6
作者 cai zixing 《Journal of Central South University》 SCIE EI CAS 1998年第1期61-64,共4页
Some typical structural schemes of learning control have been investigated.The schemes involve the pattern recognitionbased learning control,iterative learning control,repetitive learning control,and connectionist lea... Some typical structural schemes of learning control have been investigated.The schemes involve the pattern recognitionbased learning control,iterative learning control,repetitive learning control,and connectionist learning control,etc.This study focuses on the control mechanism and provides a basis for potential applications.Most of the structural schemes have been applied to various control fields. 展开更多
关键词 LEARNING CONTROL pattern recognition ITERATIVE LEARNING REPETITIVE LEARNING CONNECTIONIST LEARNING
下载PDF
An adaptive particle filter for soft fault compensation of mobile robots 被引量:8
7
作者 DUAN ZhuoHua cai zixing YU JinXia 《Science in China(Series F)》 2008年第12期2033-2046,共14页
Soft fault compensation plays an important role in mobile robot locating, mapping, and navigating. It is difficult to achieve fast and accurate compensation for mobile robots because they are usually highly non-linear... Soft fault compensation plays an important role in mobile robot locating, mapping, and navigating. It is difficult to achieve fast and accurate compensation for mobile robots because they are usually highly non-linear, non-Gaussian systems with limited computation and memory resources. An adaptive particle filter is presented to compensate two kinds of soft faults for mobile robots, i.e., noise or factor faults of dead reckoning sensors and slippage of wheels. Firstly, the kinematics models and the fault models are discussed, and five kinds of residual features are extracted to detect soft faults. Secondly, an adaptive particle filter is designed for fault compensation, and two kinds of adaptive scheme are discussed: 1) the noise variances of linear speed and yaw rate are adjusted according to residual features; 2) the particle number is adapted according to Kullback-Leibler divergence (KLD) of two approximate distribution denoted with two particle sets with different particles, i.e., increasing particle number if the KLD is large and decreasing particle number if the KLD is small. The theoretic proof is given and experimental results show the efficiency and accuracy of the presented approach. 展开更多
关键词 soft fault detection and compensation ADAPTIVE particle filter mobile robots
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部