Floods are one of the most common natural hazards occurring all around the world.However,the knowledge of the origins of a food and its possible magnitude in a given region remains unclear yet.This lack of understandi...Floods are one of the most common natural hazards occurring all around the world.However,the knowledge of the origins of a food and its possible magnitude in a given region remains unclear yet.This lack of understanding is particularly acute in mountainous regions with large degrees in Sichuan Province,China,where runoff is seldom measured.The nature of streamflow in a region is related to the time and spatial distribution of rainfall quantity and watershed geomorphology.The geomorphologic characteristics are the channel network and surrounding landscape which transform the rainfall input into an output hydrograph at the outlet of the watershed.With the given geomorphologic properties of the watershed,theoretically the hydrological response function can be determined hydraulically without using any recorded data of past rainfall or runoff events.In this study,a kinematic-wave-based geomorphologic instantaneous unit hydrograph (KW-GIUH) model was adopted and verified to estimate runoff in ungauged areas.Two mountain watersheds,the Yingjing River watershed and Tianquan River watershed in Sichuan were selected as study sites.The geomorphologic factors of the two watersheds were obtained by using a digital elevation model (DEM) based on the topographic database obtained from the Shuttle Radar Topography Mission of US's NASA.The tests of the model on the two watersheds were performed both at gauged and ungauged sites.Comparison between the simulated and observed hydrographs for a number of rainstorms at the gauged sites indicated the potential of the KW-GIUH model as a useful tool for runoff analysis in these regions.Moreover,to simulate possible concentrated rainstorms that could result in serious flooding in these areas,synthetic rainfall hyetographs were adopted as input to the KW-GIUH model to obtain the flow hydrographs at two ungauged sites for different return period conditions.Hydroeconomic analysis can be performed in the future to select the optimum design return period for determining the flood control work.展开更多
The distribution of velocity is one of the basic issues in river dynamics.Based on the experimental data measured by ADV in the flume of State Key Hydraulics Laboratory (SKHL),this paper analyzed the ver- tical distri...The distribution of velocity is one of the basic issues in river dynamics.Based on the experimental data measured by ADV in the flume of State Key Hydraulics Laboratory (SKHL),this paper analyzed the ver- tical distribution of point velocity and the varying law of turbulence intensity in straight mobile compound chan- nel with an asymmetric floodplain.Above certain relative height,the streamwise point velocity follows the loga- rithmic distribution.Below the location,the velocity varies linearly approxim...展开更多
The Jialing River is one of the main tributaries of the Yangtze River. The average annual runoff accounts for 16 % and the sediment load 26% of the total at Yichang therefore it's one of the main contributors of sedi...The Jialing River is one of the main tributaries of the Yangtze River. The average annual runoff accounts for 16 % and the sediment load 26% of the total at Yichang therefore it's one of the main contributors of sediment to the Three Gorges Reservoir. Ever since 1989, our country has implemented "Yangtze River soil and water conservation" project, Till the end of 1996, altogether 25.8 % of erosion area in Jialing River has been improved after large scale conservation has taken effect. The analysis and comparison between records taken before and after the implementation of soil and water conservation on runoff and sediment yield indicated that the sediment load soil erosion in Jialing river basin has been taken under control to some extent. Amount of annual runoff in main conservations have generally dropped by exponential function. Obvious result has been achieved in Jialing River, efficiency of sand reduction is about 10%-25%. Therefore, sediment to Three Gorges Reservoir is decreased accordingly, and it will be beneficial to take advantage of reser- voir's synthetic benefit.展开更多
Abundant solid materials were formed as a result of landslide and collapse due to Wenchuan earthquake.The solid source around mountains would form a debris flow when appropriate rain condition occurs.Such a debris flo...Abundant solid materials were formed as a result of landslide and collapse due to Wenchuan earthquake.The solid source around mountains would form a debris flow when appropriate rain condition occurs.Such a debris flow is structurally very large and strong,and the river flow can hardly wash away the deposit when the debris flow enters into the mainstream.As a result,the deposit on the river bed due to debris flow will cause a series of hazards.Based on the previous researches and relevant data,this paper simplified the interaction between debris flow and current of the main river,and adopted the finite element characteristic-based-split algorithm which is favorable to the stabilization of dealing with the convection.Finally,the numerical model of the confluence of debris flow deposit and main river was developed,and the deposit progress of the mega-debris flow from Wenjiagou in Mianyuan river was reproduced.Furthermore,the influence of the deposit on the flow route of the main river,and distribution of velocity and water depth were analyzed.The results showed that the simulation deposit terrain qualitatively agreed with the field data through comparison,including the deposit area and depth distribution.Furthermore,the improvement of the model in future was discussed.展开更多
基金supported by the key project of the National Natural Science Foundation of China (NSFC No. 50739002)the National Science Council of Taibei of China (NSC 97-2625-M-019-001)+1 种基金the Open Research Fund Program of State key Laboratory of Hydraulics and River Engineering,Sichuan University,China (No. 1001)Financial supports from the above organizations are fully acknowledged
文摘Floods are one of the most common natural hazards occurring all around the world.However,the knowledge of the origins of a food and its possible magnitude in a given region remains unclear yet.This lack of understanding is particularly acute in mountainous regions with large degrees in Sichuan Province,China,where runoff is seldom measured.The nature of streamflow in a region is related to the time and spatial distribution of rainfall quantity and watershed geomorphology.The geomorphologic characteristics are the channel network and surrounding landscape which transform the rainfall input into an output hydrograph at the outlet of the watershed.With the given geomorphologic properties of the watershed,theoretically the hydrological response function can be determined hydraulically without using any recorded data of past rainfall or runoff events.In this study,a kinematic-wave-based geomorphologic instantaneous unit hydrograph (KW-GIUH) model was adopted and verified to estimate runoff in ungauged areas.Two mountain watersheds,the Yingjing River watershed and Tianquan River watershed in Sichuan were selected as study sites.The geomorphologic factors of the two watersheds were obtained by using a digital elevation model (DEM) based on the topographic database obtained from the Shuttle Radar Topography Mission of US's NASA.The tests of the model on the two watersheds were performed both at gauged and ungauged sites.Comparison between the simulated and observed hydrographs for a number of rainstorms at the gauged sites indicated the potential of the KW-GIUH model as a useful tool for runoff analysis in these regions.Moreover,to simulate possible concentrated rainstorms that could result in serious flooding in these areas,synthetic rainfall hyetographs were adopted as input to the KW-GIUH model to obtain the flow hydrographs at two ungauged sites for different return period conditions.Hydroeconomic analysis can be performed in the future to select the optimum design return period for determining the flood control work.
基金Supported by Key Project of Chinese.Ministry of Education (03134)
文摘The distribution of velocity is one of the basic issues in river dynamics.Based on the experimental data measured by ADV in the flume of State Key Hydraulics Laboratory (SKHL),this paper analyzed the ver- tical distribution of point velocity and the varying law of turbulence intensity in straight mobile compound chan- nel with an asymmetric floodplain.Above certain relative height,the streamwise point velocity follows the loga- rithmic distribution.Below the location,the velocity varies linearly approxim...
文摘The Jialing River is one of the main tributaries of the Yangtze River. The average annual runoff accounts for 16 % and the sediment load 26% of the total at Yichang therefore it's one of the main contributors of sediment to the Three Gorges Reservoir. Ever since 1989, our country has implemented "Yangtze River soil and water conservation" project, Till the end of 1996, altogether 25.8 % of erosion area in Jialing River has been improved after large scale conservation has taken effect. The analysis and comparison between records taken before and after the implementation of soil and water conservation on runoff and sediment yield indicated that the sediment load soil erosion in Jialing river basin has been taken under control to some extent. Amount of annual runoff in main conservations have generally dropped by exponential function. Obvious result has been achieved in Jialing River, efficiency of sand reduction is about 10%-25%. Therefore, sediment to Three Gorges Reservoir is decreased accordingly, and it will be beneficial to take advantage of reser- voir's synthetic benefit.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB409903)the National Natural Science Foundation of China (Grant No. 50739002)
文摘Abundant solid materials were formed as a result of landslide and collapse due to Wenchuan earthquake.The solid source around mountains would form a debris flow when appropriate rain condition occurs.Such a debris flow is structurally very large and strong,and the river flow can hardly wash away the deposit when the debris flow enters into the mainstream.As a result,the deposit on the river bed due to debris flow will cause a series of hazards.Based on the previous researches and relevant data,this paper simplified the interaction between debris flow and current of the main river,and adopted the finite element characteristic-based-split algorithm which is favorable to the stabilization of dealing with the convection.Finally,the numerical model of the confluence of debris flow deposit and main river was developed,and the deposit progress of the mega-debris flow from Wenjiagou in Mianyuan river was reproduced.Furthermore,the influence of the deposit on the flow route of the main river,and distribution of velocity and water depth were analyzed.The results showed that the simulation deposit terrain qualitatively agreed with the field data through comparison,including the deposit area and depth distribution.Furthermore,the improvement of the model in future was discussed.