Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorptio...Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20% (mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.展开更多
Geometries, interaction energies and electronic properties for four types of dimers(hydrogen bonded, halogen bonded, π-halogen bonded, and ~r-hydrogen bonded) between HCCF and HCCR(R=F, CI, Br) were studied via M...Geometries, interaction energies and electronic properties for four types of dimers(hydrogen bonded, halogen bonded, π-halogen bonded, and ~r-hydrogen bonded) between HCCF and HCCR(R=F, CI, Br) were studied via MP2/6-31 1++G(d,p) ab initio calculation. It is shown that the strength of the zr-hydrogen bonded dimers turns out to be greater than those of the other three types of dimers, with the interaction energies --4.611 kJ/mol for HCCF-HCCF, -4.700 kJ/mol for HCCF-HCCC1, and -4.850 kJ/mol for HCCF-HCCBr respectively at the CCSD(T)/6-311++ G(d,p)//MP2/6-31 1++G(d,p) level. In an effort to understand the nature of the intermolecular interactions prevalent in these dimers, the interaction energies were decomposed into physically distinct energy components with the aid of the symmetry adapted perturbation theory(SAPT). The dispersion force is found to be the main origin of the intermolecular interactions in hydrogen bonded and halogen bonded dimers. In the π-halogen bonded system, the dispersion is the major bonding force in HCCF-HCCF and HCCF-HCCC1, while the induction energy is the most important component in HCCF-HCCBr. However, both the dispersion and electrostatic energy play a key role in π-hydrogen bonded dimers.展开更多
Nanocrystal N-Zn-Ag/TiO2 powders were prepared with N-Zn/TiO2 by photo deposition method. A series of pure polymers P3HT[poly(3-hexylthiophene)], P3OT[poly(3-octylthiophene)], P3DT[poly(3-decylthiophene)] and P3...Nanocrystal N-Zn-Ag/TiO2 powders were prepared with N-Zn/TiO2 by photo deposition method. A series of pure polymers P3HT[poly(3-hexylthiophene)], P3OT[poly(3-octylthiophene)], P3DT[poly(3-decylthiophene)] and P3DDT[poly(3-dodecylthiophene)], was synthesized, which were used to synthesize p-n type semiconductor mate- rials P3HT/N-Zn-Ag-TiO2, P3OT/N-Zn-Ag-TiO2, P3DT/N-Zn-Ag-TiO2 and P3DDT/N-Zn-Ag-TiO2 by in situ che- mical method. X-Ray diffraction(XRD) and infrared(IR) spectroscopy showed the structure of the polymers and complexes. Ultraviolet-visible(UV-Vis) spectra and cyclic voltammograms(CV) showed the optical and electronic performance of the polymers and complexes. Two new single and double organic thin film heterojunction solar cells were prepared with the above mentioned synthesized powders as raw materials. Current-voltage(I-V) measurements indicate that the conversion efficiency of the single organic thin film heterojunction solar cell is higher than that of the double organic thin film heterojunction solar cells. Single organic thin film heterojunction solar cells based on P3DT/N-Zn-Ag-TiO2 can get a photoelectric conversion efficiency of 0.0408%. The performance of electronic trans- form between electron donor and acceptor on organic thin film solar cells was researched.展开更多
A theoretical analysis of properties of the shared interactions between two neighbouring nitrogen atoms in a variety of compounds is presented, based on properties of charge distributions derived from 6-31 ++G** wave ...A theoretical analysis of properties of the shared interactions between two neighbouring nitrogen atoms in a variety of compounds is presented, based on properties of charge distributions derived from 6-31 ++G** wave functions. Bond is characterized in terms of its bond order, bond ellipticity and the quantity of Laplacian of p at the bond critical point. The difference between the bond path angle and the corresponding geometrical angle provides a measure of the degree of relaxation for the charge density away from the geometrical constraints imposed by the nuclear framework. Comparisons have been made between the nitrogen-containing compounds and isoelectronic hydrocarbons. Values of the NN bond energies, based on the properties of NN bond interatomic surface, are determined in three schemes.展开更多
基金Supported by the Research Fund for the Doctoral Program of Higher Education(No20050010014)the China Petroleum &Chemical Corporation ( No X503015 )the Key Discipline Construction Foundation of Beijing Education Committee ( NoXK100100643)
文摘Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20% (mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(No.B30865)Research Foundation of Hunan University of Science and Technology,China(No.E50814)
文摘Geometries, interaction energies and electronic properties for four types of dimers(hydrogen bonded, halogen bonded, π-halogen bonded, and ~r-hydrogen bonded) between HCCF and HCCR(R=F, CI, Br) were studied via MP2/6-31 1++G(d,p) ab initio calculation. It is shown that the strength of the zr-hydrogen bonded dimers turns out to be greater than those of the other three types of dimers, with the interaction energies --4.611 kJ/mol for HCCF-HCCF, -4.700 kJ/mol for HCCF-HCCC1, and -4.850 kJ/mol for HCCF-HCCBr respectively at the CCSD(T)/6-311++ G(d,p)//MP2/6-31 1++G(d,p) level. In an effort to understand the nature of the intermolecular interactions prevalent in these dimers, the interaction energies were decomposed into physically distinct energy components with the aid of the symmetry adapted perturbation theory(SAPT). The dispersion force is found to be the main origin of the intermolecular interactions in hydrogen bonded and halogen bonded dimers. In the π-halogen bonded system, the dispersion is the major bonding force in HCCF-HCCF and HCCF-HCCC1, while the induction energy is the most important component in HCCF-HCCBr. However, both the dispersion and electrostatic energy play a key role in π-hydrogen bonded dimers.
基金Supported by the Key Science Planning Program of Hainan Province of China(No.ZDXM20100062), the Research Project of the Department of Education of Hainan Province of China(No.Hj2010-52) and the Nature Science Foundation of Hainan Province of China(No. 509013).
文摘Nanocrystal N-Zn-Ag/TiO2 powders were prepared with N-Zn/TiO2 by photo deposition method. A series of pure polymers P3HT[poly(3-hexylthiophene)], P3OT[poly(3-octylthiophene)], P3DT[poly(3-decylthiophene)] and P3DDT[poly(3-dodecylthiophene)], was synthesized, which were used to synthesize p-n type semiconductor mate- rials P3HT/N-Zn-Ag-TiO2, P3OT/N-Zn-Ag-TiO2, P3DT/N-Zn-Ag-TiO2 and P3DDT/N-Zn-Ag-TiO2 by in situ che- mical method. X-Ray diffraction(XRD) and infrared(IR) spectroscopy showed the structure of the polymers and complexes. Ultraviolet-visible(UV-Vis) spectra and cyclic voltammograms(CV) showed the optical and electronic performance of the polymers and complexes. Two new single and double organic thin film heterojunction solar cells were prepared with the above mentioned synthesized powders as raw materials. Current-voltage(I-V) measurements indicate that the conversion efficiency of the single organic thin film heterojunction solar cell is higher than that of the double organic thin film heterojunction solar cells. Single organic thin film heterojunction solar cells based on P3DT/N-Zn-Ag-TiO2 can get a photoelectric conversion efficiency of 0.0408%. The performance of electronic trans- form between electron donor and acceptor on organic thin film solar cells was researched.
基金The project was supported by the National Natural Science Foundation of China
文摘A theoretical analysis of properties of the shared interactions between two neighbouring nitrogen atoms in a variety of compounds is presented, based on properties of charge distributions derived from 6-31 ++G** wave functions. Bond is characterized in terms of its bond order, bond ellipticity and the quantity of Laplacian of p at the bond critical point. The difference between the bond path angle and the corresponding geometrical angle provides a measure of the degree of relaxation for the charge density away from the geometrical constraints imposed by the nuclear framework. Comparisons have been made between the nitrogen-containing compounds and isoelectronic hydrocarbons. Values of the NN bond energies, based on the properties of NN bond interatomic surface, are determined in three schemes.