The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of trans...The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of transmission and pathogenesis, development of diagnostics, prevention by future vaccination, and treatment by developing new drugs. We report the complete genome sequence and comparative analysis of an isolate (BJ01) of the coronavirus that has been recognized as a pathogen for SARS. The genome is 29725 nt in size and has 11 ORFs (Open Reading Frames). It is composed of a stable region encoding an RNA-dependent RNA polymerase (composed of 2 ORFs) and a variable region representing 4 CDSs (coding sequences) for viral structural genes (the S, E, M, N proteins) and 5 PUPs (putative uncharacterized proteins). Its gene order is identical to that of other known coronaviruses. The sequence alignment with all known RNA viruses places this virus as a member in the family of Coronaviridae. Thirty putative substitutions have been identified by comparative analysis of the 5 SARS- associated virus genome sequences in GenBank. Fifteen of them lead to possible amino acid changes (non-synonymous mutations) in the proteins. Three amino acid changes, with predicted alteration of physical and chemical features, have been detected in the S protein that is postulated to beinvolved in the immunoreactions between the virus and its host. Two amino acid changes have been detected in the Mprotein, which could be related to viral envelope formation. Phylogenetic analysis suggests the possibility of non-human origin of the SARS-associated viruses but provides noevidence that they are man-made. Further efforts should focus on identifying the etiology of the SARS-associated virus and ruling out conclusively the existence of otherpossible SARS-related pathogen(s).展开更多
A logistic model was employed to correlate the outbreak of highly pathogenic avian influenza (HPAI) with related environmental factors and the migration of birds. Based on MODIS data of the normalized difference veget...A logistic model was employed to correlate the outbreak of highly pathogenic avian influenza (HPAI) with related environmental factors and the migration of birds. Based on MODIS data of the normalized difference vegetation index, environmental factors were considered in generating a probability map with the aid of logistic regression. A Bayesian maximum entropy model was employed to explore the spatial and temporal correlations of HPAI incidence. The results show that proximity to water bodies and national highways was statistically relevant to the occurrence of HPAI. Migratory birds, mainly waterfowl, were important infection sources in HPAI transmission. In addition, the HPAI outbreaks had high spatiotemporal autocorrelation. This epidemic spatial range fluctuated 45 km owing to different distribution patterns of cities and water bodies. Furthermore, two outbreaks were likely to occur with a period of 22 d. The potential risk of occurrence of HPAI in China's Mainland for the period from January 23 to February 17, 2004 was simulated based on these findings, providing a useful meta-model framework for the application of environmental factors in the prediction of HPAI risk.展开更多
文摘The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of transmission and pathogenesis, development of diagnostics, prevention by future vaccination, and treatment by developing new drugs. We report the complete genome sequence and comparative analysis of an isolate (BJ01) of the coronavirus that has been recognized as a pathogen for SARS. The genome is 29725 nt in size and has 11 ORFs (Open Reading Frames). It is composed of a stable region encoding an RNA-dependent RNA polymerase (composed of 2 ORFs) and a variable region representing 4 CDSs (coding sequences) for viral structural genes (the S, E, M, N proteins) and 5 PUPs (putative uncharacterized proteins). Its gene order is identical to that of other known coronaviruses. The sequence alignment with all known RNA viruses places this virus as a member in the family of Coronaviridae. Thirty putative substitutions have been identified by comparative analysis of the 5 SARS- associated virus genome sequences in GenBank. Fifteen of them lead to possible amino acid changes (non-synonymous mutations) in the proteins. Three amino acid changes, with predicted alteration of physical and chemical features, have been detected in the S protein that is postulated to beinvolved in the immunoreactions between the virus and its host. Two amino acid changes have been detected in the Mprotein, which could be related to viral envelope formation. Phylogenetic analysis suggests the possibility of non-human origin of the SARS-associated viruses but provides noevidence that they are man-made. Further efforts should focus on identifying the etiology of the SARS-associated virus and ruling out conclusively the existence of otherpossible SARS-related pathogen(s).
基金supported by the National Basic Research Program of China (2007CB714404)the National Natural Science Foundation of China (40871173)the Spe-cial Grant for the Prevention and Treatment of Infectious Diseases (2008ZX10004-012)
文摘A logistic model was employed to correlate the outbreak of highly pathogenic avian influenza (HPAI) with related environmental factors and the migration of birds. Based on MODIS data of the normalized difference vegetation index, environmental factors were considered in generating a probability map with the aid of logistic regression. A Bayesian maximum entropy model was employed to explore the spatial and temporal correlations of HPAI incidence. The results show that proximity to water bodies and national highways was statistically relevant to the occurrence of HPAI. Migratory birds, mainly waterfowl, were important infection sources in HPAI transmission. In addition, the HPAI outbreaks had high spatiotemporal autocorrelation. This epidemic spatial range fluctuated 45 km owing to different distribution patterns of cities and water bodies. Furthermore, two outbreaks were likely to occur with a period of 22 d. The potential risk of occurrence of HPAI in China's Mainland for the period from January 23 to February 17, 2004 was simulated based on these findings, providing a useful meta-model framework for the application of environmental factors in the prediction of HPAI risk.