Fusarium oxysporum f. sp. conglutinans (Foc) is the causal agent of Fusarium wilt disease of Brassica oleracea. A rapid, accurate, and reliable method to detect and identify plant pathogens is vitally important to i...Fusarium oxysporum f. sp. conglutinans (Foc) is the causal agent of Fusarium wilt disease of Brassica oleracea. A rapid, accurate, and reliable method to detect and identify plant pathogens is vitally important to integrated disease management. In this study, using a comparative genome analysis among Fusarium oxysporum (Fo), we developed a Foc-specific primer set (Focs-l/Focs-2) and established a multiplex-PCR assay. In the assay, the Focs-1/Focs-2 and universal primers for Fusarium species (W106PJF106S) could be used to detect Foc isolates in a single PCR reaction. With the optimized PCR parameters, the multiplex-PCR assay showed a high specificity for detecting Foc and was very sensitive to detect as little as 100 pg of pure Foc genomic DNAor 1 000 spores in 1 g of twice-autoclaved soil. We also demonstrated that Foc isolates were easily detected from infected plant tissues, as well as from natural field soils, using the multiplex-PCR assay. To our knowledge, this is a first report on detection Fo by comparative genomic method.展开更多
基金supported in part by the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P.R.Chinathe National Natural Science Foundation of China (31571962, 31272003)+3 种基金the National Key Technology R&D Program of China (2012BAD19B06)the Special Fund for Agro-Scientific Research in the Public Interest, China (200903049-04)the National Staple Vegetable Industry Technology System Construction Project, China (CARS-25-B-01)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences
文摘Fusarium oxysporum f. sp. conglutinans (Foc) is the causal agent of Fusarium wilt disease of Brassica oleracea. A rapid, accurate, and reliable method to detect and identify plant pathogens is vitally important to integrated disease management. In this study, using a comparative genome analysis among Fusarium oxysporum (Fo), we developed a Foc-specific primer set (Focs-l/Focs-2) and established a multiplex-PCR assay. In the assay, the Focs-1/Focs-2 and universal primers for Fusarium species (W106PJF106S) could be used to detect Foc isolates in a single PCR reaction. With the optimized PCR parameters, the multiplex-PCR assay showed a high specificity for detecting Foc and was very sensitive to detect as little as 100 pg of pure Foc genomic DNAor 1 000 spores in 1 g of twice-autoclaved soil. We also demonstrated that Foc isolates were easily detected from infected plant tissues, as well as from natural field soils, using the multiplex-PCR assay. To our knowledge, this is a first report on detection Fo by comparative genomic method.