当前,针对知识网络的链路预测主要是基于网络拓扑结构的相似性,很少考虑作者的研究领域,导致信息利用不充分等问题,因此本文提出了双层知识网络的链路预测框架hypernet2vec。双层知识网络,即作者合著关系网络和学术领域关系网络,利用网...当前,针对知识网络的链路预测主要是基于网络拓扑结构的相似性,很少考虑作者的研究领域,导致信息利用不充分等问题,因此本文提出了双层知识网络的链路预测框架hypernet2vec。双层知识网络,即作者合著关系网络和学术领域关系网络,利用网络表示学习,分别将两层网络中的节点映射到低维的向量空间,再输入到专门设计的卷积神经网络中计算并进行链路预测。与经典的链路预测指标如RA指标、LP指标和LRW指标等相比,hypernet2vec模型预测的AUC(area under curve)值取得了显著的提升,平均提升幅度达11.17%。文章还从情报产生层面和复杂系统层面,对模型发生作用的深层机理进行了探讨。展开更多
文摘当前,针对知识网络的链路预测主要是基于网络拓扑结构的相似性,很少考虑作者的研究领域,导致信息利用不充分等问题,因此本文提出了双层知识网络的链路预测框架hypernet2vec。双层知识网络,即作者合著关系网络和学术领域关系网络,利用网络表示学习,分别将两层网络中的节点映射到低维的向量空间,再输入到专门设计的卷积神经网络中计算并进行链路预测。与经典的链路预测指标如RA指标、LP指标和LRW指标等相比,hypernet2vec模型预测的AUC(area under curve)值取得了显著的提升,平均提升幅度达11.17%。文章还从情报产生层面和复杂系统层面,对模型发生作用的深层机理进行了探讨。