We review the progress and future possibilities in the emerging area of molecular spintronics. We first provide an overview of the different transport regimes in which electronic nanodevices can operate, then briefly ...We review the progress and future possibilities in the emerging area of molecular spintronics. We first provide an overview of the different transport regimes in which electronic nanodevices can operate, then briefly overview the important characteristics of molecular magnetic materials that can be useful for application in spintronics and we eventually present several schemes to include such systems into spintronic nanodevices. We hightlight the importance of a chemical approach to the area, and in the last section we showcase some approaches to the creation of hybrids made of carbon nanostructures and molecular magnets, which are gaining increasing attention.展开更多
基金financial support from the Humboldt Stiftung (Sofja Kovalevskaja Prize)the German DFG (SPP 1601)the BW Stiftung via the Kompetenznetz Funktionelle Nanostrukturen
文摘We review the progress and future possibilities in the emerging area of molecular spintronics. We first provide an overview of the different transport regimes in which electronic nanodevices can operate, then briefly overview the important characteristics of molecular magnetic materials that can be useful for application in spintronics and we eventually present several schemes to include such systems into spintronic nanodevices. We hightlight the importance of a chemical approach to the area, and in the last section we showcase some approaches to the creation of hybrids made of carbon nanostructures and molecular magnets, which are gaining increasing attention.