The relationship between the microstructure and mechanical properties of the spark plasma sintered AA2024 Y composites subjected to cryo-rolling was investigated. Yttrium addition enhances the mechanical properties of...The relationship between the microstructure and mechanical properties of the spark plasma sintered AA2024 Y composites subjected to cryo-rolling was investigated. Yttrium addition enhances the mechanical properties of the composites by promoting grain refinement and precipitation. However, there is a clear trend of initial increase and later decrease in the properties. Also, it is observed that 0.3 wt.% of yttrium is the optimum amount of reinforcement content to obtain the highest mechanical properties. To further improve the tensile strength of the composites, cryo-rolling was performed on the composites under standard cryogenic conditions by several passes up to a reduction of 25%. The mechanical properties and the corresponding microstructures of composites after cryo-rolling were correlated. The SEM and TEM microstructures reveal that the samples exhibit dual size grains, i.e., nanograins are formed as sub-grains within the actual grain. Due to the grain size reduction and the increase in the dislocation density, the tensile properties are remarkably improved compared to those of the composites before cryo-rolling. The highest mechanical properties like hardness, YS and UTS are found to be 153 HV, 539 MPa and 572 MPa, respectively, with a reasonable ductility in the composite with 0.3 wt.% Y.展开更多
The effects of yttrium and artificial aging on AA2024 alloy were investigated.The developed samples were further subjected to artificial aging at 190℃for 1-10 h with an interval of 1 h.The metallurgical characterizat...The effects of yttrium and artificial aging on AA2024 alloy were investigated.The developed samples were further subjected to artificial aging at 190℃for 1-10 h with an interval of 1 h.The metallurgical characterization was done by scanning electron microscope and X-ray diffraction.The mechanical characterization like hardness and tensile strength of the samples was done using computerized Vickers hardness testing machine and universal testing machine.The microstructures revealed that addition of yttrium refined theα(Al)matrix and led to the formation of Al-Cu-Y intermetallic in the shape of Chinese script which strengthened the samples.Compared to the base metal,samples with yttrium addition showed better mechanical properties.The sample reinforced with 0.3 wt.%yttrium showed the highest mechanical properties with the hardness of 66 HV,UTS of 223 MPa,YS of 180 MPa,and elongation of 20.9%.The artificially aged samples showed that the peak hardening of all the samples took place within 5 h of aging at 190℃with Al2 Cu precipitation.Aging changed the intermetallic from Chinese script to the fibrous form.The optimum amount of yttrium addition to AA2024 was found to be 0.3 wt.%.展开更多
基金the Indian Institute of Technology Roorkee and MHRD for providing financial support
文摘The relationship between the microstructure and mechanical properties of the spark plasma sintered AA2024 Y composites subjected to cryo-rolling was investigated. Yttrium addition enhances the mechanical properties of the composites by promoting grain refinement and precipitation. However, there is a clear trend of initial increase and later decrease in the properties. Also, it is observed that 0.3 wt.% of yttrium is the optimum amount of reinforcement content to obtain the highest mechanical properties. To further improve the tensile strength of the composites, cryo-rolling was performed on the composites under standard cryogenic conditions by several passes up to a reduction of 25%. The mechanical properties and the corresponding microstructures of composites after cryo-rolling were correlated. The SEM and TEM microstructures reveal that the samples exhibit dual size grains, i.e., nanograins are formed as sub-grains within the actual grain. Due to the grain size reduction and the increase in the dislocation density, the tensile properties are remarkably improved compared to those of the composites before cryo-rolling. The highest mechanical properties like hardness, YS and UTS are found to be 153 HV, 539 MPa and 572 MPa, respectively, with a reasonable ductility in the composite with 0.3 wt.% Y.
文摘The effects of yttrium and artificial aging on AA2024 alloy were investigated.The developed samples were further subjected to artificial aging at 190℃for 1-10 h with an interval of 1 h.The metallurgical characterization was done by scanning electron microscope and X-ray diffraction.The mechanical characterization like hardness and tensile strength of the samples was done using computerized Vickers hardness testing machine and universal testing machine.The microstructures revealed that addition of yttrium refined theα(Al)matrix and led to the formation of Al-Cu-Y intermetallic in the shape of Chinese script which strengthened the samples.Compared to the base metal,samples with yttrium addition showed better mechanical properties.The sample reinforced with 0.3 wt.%yttrium showed the highest mechanical properties with the hardness of 66 HV,UTS of 223 MPa,YS of 180 MPa,and elongation of 20.9%.The artificially aged samples showed that the peak hardening of all the samples took place within 5 h of aging at 190℃with Al2 Cu precipitation.Aging changed the intermetallic from Chinese script to the fibrous form.The optimum amount of yttrium addition to AA2024 was found to be 0.3 wt.%.