期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
全身免疫炎症指数对低中危社区获得性肺炎发生脓毒症的预测价值
1
作者 柴豆豆 王晓苗 邢柏 《海南医学院学报》 CAS 北大核心 2024年第2期113-119,共7页
目的:评估全身免疫炎症指数(systemic immune inflammation index,SII)对低中危社区获得性肺炎发生脓毒症的预测价值。方法:纳入2020年1月~2023年1月海南医学院第二附属医院急诊科收治的589例低中危社区获得性肺炎老年患者为研究对象,... 目的:评估全身免疫炎症指数(systemic immune inflammation index,SII)对低中危社区获得性肺炎发生脓毒症的预测价值。方法:纳入2020年1月~2023年1月海南医学院第二附属医院急诊科收治的589例低中危社区获得性肺炎老年患者为研究对象,收集患者一般资料、实验室检测结果,通过绘制受试者工作特征(ROC)曲线确定连续变量预测低中危社区获得性肺炎老年患者并发脓毒症的最佳界值,转化为二分类变量,采用单因素和多因素Logistic回归分析低中危社区获得性肺炎老年患者发生脓毒症的影响因素。并以此构建预测脓毒症发生风险的列线图模型。分别通过校准曲线和ROC曲线验证模型的区分度、一致性和准确性,并采用决策曲线分析法确定模型的临床实用性。结果:本研究共纳入589例低中危社区获得性肺炎老年患者,其中发生脓毒症者96例(16.30%)。脓毒症组和非脓毒症组的年龄、合并糖尿病及慢性阻塞性肺疾病、Lac、PCT、SII等指标的差异有统计学意义(P<0.05)。Logistics回归分析显示:年龄、合并糖尿病及慢性阻塞性肺疾病、Lac、SII为低中危社区获得性肺炎老年患者发生脓毒症的独立危险因素。使用列线图预测模型进行验证,结果显示AUC为0.826(95%CI:0.780~0.872),校准曲线趋于理想曲线,具有较好的准确性。决策曲线表明,该模型的阈值在0.10~0.78之间时,该模型有临床获益优势。结论:基于SII构建的预测低中危社区获得性肺炎老年患者发生脓毒症的列线图预测模型具有较好的准确性,可以早期预测脓毒症的发生,有助于早期识别高危人群和及时干预,从而改善患者预后。 展开更多
关键词 老年人 全身免疫炎症指数 社区获得性肺炎 脓毒症 列线图模型
下载PDF
Predictive value of systemic immunity index for sepsis in low-medium risk community-acquired pneumonia
2
作者 chai dou-dou WANG Xiao-miao XING Bo 《Journal of Hainan Medical University》 CAS 2024年第2期26-32,共7页
Objective:To assess the predictive value of systemic immune inflammation index(SII)for sepsis in low-and medium-risk community-acquired pneumonia.Methods:A total of 589 elderly patients with low-and medium-risk commun... Objective:To assess the predictive value of systemic immune inflammation index(SII)for sepsis in low-and medium-risk community-acquired pneumonia.Methods:A total of 589 elderly patients with low-and medium-risk community-acquired pneumonia admitted to the Emergency Department of the Second Affiliated Hospital of Hainan Medical University from January 2020 to January 2023 were included as the research subjects,and the general information and laboratory test results of the patients were collected,and the optimal cut-off value of continuous variables for predicting sepsis in elderly patients with low-and medium-risk community-acquired pneumonia was determined by plotting the receiver work characteristic(ROC)curve,which was converted into dichotomous variables and univariate and multivariate logistic Regression analysis of the influencing factors of sepsis in elderly patients with low-and medium-risk community-acquired pneumonia.Based on this,a nomogram model is constructed to predict the risk of sepsis.The differentiation,consistency and accuracy of the model were verified by calibration curve and subject operating characteristic(ROC)curve,and the clinical utility of the model was determined by decision curve analysis.Results:A total of 589 elderly patients with low-and intermediate-risk community-acquired pneumonia were included in this study,of which 96(16.30%)developed sepsis.There were significant differences in age,diabetes mellitus and chronic obstructive pulmonary disease,Lac,PCT,SII and other indexes between sepsis and non-sepsis groups(P<0.05).Logistics regression analysis showed that age,diabetes mellitus and chronic obstructive pulmonary disease,Lac,and SII were independent risk factors for sepsis in elderly patients with low-and medium-risk community-acquired pneumonia.The nomogram prediction model was used to verify the results,and the AUC was 0.826(95%CI:0.780-0.872),and the calibration curve tended to the ideal curve with good accuracy.The decision curve shows that when the threshold of the model is between 0.10~0.78,the model has the advantage of clinical benefit.Conclusion:The nomogram prediction model constructed based on SII to predict sepsis in elderly patients with low-and medium-risk community-acquired pneumonia has good accuracy,which can predict the occurrence of sepsis early,help early identification of high-risk groups and timely intervention,and thus improve the prognosis of patients. 展开更多
关键词 Senior citizen Systemic immunoinflammation index Community-acquired pneumonia SEPSIS Nomogram model
下载PDF
控制营养状态评分对老年脓毒症进展为慢重症的预测价值
3
作者 王晓苗 柴豆豆 邢柏 《海南医学院学报》 2023年第23期1801-1808,共8页
目的:探讨控制营养状态(controlling nutritional status,CONUT)评分对老年脓毒症进展为慢重症的预测价值,并构建基于CONUT评分列线图预测模型。方法:选取海南医学院第二附属医院重症监护室2020年1月~2022年12月收治的739例老年脓毒症... 目的:探讨控制营养状态(controlling nutritional status,CONUT)评分对老年脓毒症进展为慢重症的预测价值,并构建基于CONUT评分列线图预测模型。方法:选取海南医学院第二附属医院重症监护室2020年1月~2022年12月收治的739例老年脓毒症患者为研究对象,根据是否发生慢重症分为慢重症组(n=188例)和非慢重症组(n=551例),收集患者的临床资料并进行比较。比较CONUT评分、PNI和NLR在老年脓毒症进展为慢重症的预测价值,并确定最佳界值,采用最佳界值将数值型变量转化为二分类变量;通过单因素分析和多因素Logistic回归分析筛选出影响老年脓毒症患者进展为慢重症的危险因素,并以此构建列线图预测模型;通过受试者工作特征(ROC)曲线下面积(AUC)、校准曲线和决策曲线分析法(DCA)评价预测模型效能和临床实用性。结果:CONUT评分在预测老年脓毒症进展为慢重症的最佳界值为4分,对老年脓毒症进展为慢重症的预测效能(AUC=0.739)优于PNI(AUC=0.609)和NLR(AUC=0.582),差异具有统计学意义(CONUT评分比PNI:Z=5.960,P<0.001;CONUT评分比NLR:Z=6.119,P<0.001)。单因素分析结果显示年龄、CCI评分、SOFA评分、脓毒症休克、血清Lac、CONUT评分、行MV和CRRT治疗在老年脓毒症进展为慢重症具有相关性(P<0.05)。多因素Logistic回归分析结果显示,CONUT评分≥4分、年龄≥75岁、CCI评分≥3分、SOFA评分>5分、脓毒症休克和血清Lac≥4 mmol/L是老年脓毒症进展为慢重症的独立危险因素(P<0.05)。列线图结果显示CONUT评分预测老年脓毒症进展为慢重症的贡献价值最大,基于此构建的列线图预测模型AUC为0.846[95%CI(0.812~0.879)],敏感度为75.5%,特异度为81.3%,提示该预测模型效能较好;校准曲线接近于理想曲线,DCA阈值在0.1~0.9之间时具有临床实用性优势。结论:基于CONUT评分构建的老年脓毒症进展为慢重症的列线图预测模型能够有效的预测老年脓毒症患者进展为慢重症的风险概率,可能有利于临床医师识别老脓毒症慢重症高危人群。 展开更多
关键词 脓毒症 慢重症 CONUT评分 列线图 预测模型
下载PDF
Predictive value of controlling nutritional status score for progression to chronic critical illness in elderly patients with sepsis
4
作者 WANG Xiao-miao chai dou-dou XING Bo 《Journal of Hainan Medical University》 CAS 2023年第23期40-47,共8页
Objective:To investigate the predictive value of controlling nutritional status(CONUT)score for progression to chronic critical illness sepsis in elderly patients,and to construct a predictive model based on CONUT sco... Objective:To investigate the predictive value of controlling nutritional status(CONUT)score for progression to chronic critical illness sepsis in elderly patients,and to construct a predictive model based on CONUT score histogram.Methods:739 elderly patients with sepsis admitted from January 2020 to December 2022 were selected as the study objects,and were divided into chronic critical illness group(n=188)and non-chronic critical illness group(n=551)according to whether chronic critical illness disease occurred.Clinical data of the patients were collected and compared.The predictive value of CONUT score,PNI and NLR in the progression of senile sepsis to chronic severe disease was compared,and the optimal threshold value was determined,which was used to convert the numerical variables into binary variables.Through univariate analysis and multivariate Logistic regression analysis,the risk factors affecting the progression of elderly sepsis patients to chronic critical illness disease were screened out,and the prediction model was built based on the nomogram.The efficacy and clinical utility of the prediction model were evaluated by the area under the ROC curve(AUC),calibration curve and decision curve analysis(DCA).Results:The best cut-off value for CONUT score in predicting elderly sepsis progressing to chronic critical illness was 4 points.The predictive performance of CONUT score(AUC=0.739)was better than that of PNI(AUC=0.609)and NLR(AUC=0.582)in elderly sepsis progressing to chronic critical illness(CONUT score vs PNI:Z=5.960,P<0.001;CONUT score vs NLR:Z=6.119,P<0.001).Univariate analysis showed that age,CCI score,SOFA score,sepsis shock,serum Lac,CONUT score,mechanical ventilation(MV),and continuous renal replacement therapy(CRRT)treatment were related to elderly sepsis progressing to chronic critical illness(P<0.05).Multivariate logistic regression analysis showed that CONUT score≥4 points,age≥75 years,CCI score≥3 points,SOFA score>5 points,sepsis shock,and serum Lac≥4 mmol/L were independent risk factors for elderly sepsis progressing to chronic critical illness(P<0.05).The nomogram showed that CONUT score had the greatest contribution value in predicting elderly sepsis progressing to chronic critical illness.Based on this,the nomogram prediction model had an AUC of 0.846[95%CI(0.812~0.879)],with a sensitivity of 75.5%and specificity of 81.3%,indicating good predictive performance.The calibration curve was close to the ideal curve,and the DCA threshold had clinical utility advantages when ranging from 0.1 to 0.9.Conclusion:The nomographic prediction model based on CONUT score can effectively predict the risk probability of senile sepsis progressing to chronic critical illness,helpful for clinicians to identify the high risk group of chronic and severe senile sepsis,which is helpful for clinicians to identify high-risk populations of elderly sepsis with chronic critical illness. 展开更多
关键词 SEPSIS Chronic critical illness The CONUT score NOMOGRAMS Prediction model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部