The complex patterns of trace elements including Ir and isotope distributions in the three K/T sections of the Nanxiong Basin prove the existence of two environmental events in the latest Cretaceous and earliest Paleo...The complex patterns of trace elements including Ir and isotope distributions in the three K/T sections of the Nanxiong Basin prove the existence of two environmental events in the latest Cretaceous and earliest Paleocene. The first geochemical environmental event occurred at about 2 Ma prior to the K/T boundary interval, where the dinosaur diversity was hardly reduced, except that a number of patho-logical eggshells appeared. The second one was larger and occurred just at and near the Creta-ceous-Paleogene (K/T) boundary. The extinction of the dinosaurs spread out within 250 ka with major extinction beginning at the boundary interval. This is even later than their extinction in Montana, North America and in India. The cause of the dinosaur extinction may be the result of a complex multiple events brought about by the coincidence of global environment change marked by multiple Ir and δ 18O anomalies, and environmental poisoning characterized by other trace elements derived from the local source. Successive short- and long-term conditions of geochemically induced environmental stress negatively affected the reproductive process and thus contributed to the extinction of the dinosaurs.展开更多
A preliminary study on the speciation of rare earth elements in plant cells has been carried out by molecular activation analysis (MAA). Mesophyll protoplasts of Brassica napus were isolated by enzymatic digestion. Af...A preliminary study on the speciation of rare earth elements in plant cells has been carried out by molecular activation analysis (MAA). Mesophyll protoplasts of Brassica napus were isolated by enzymatic digestion. After being washed with isosmotic solution containing EDTA for several times, the protoplasts were purified by gradient centrifugation. Then the concentration of rare earth elements (REEs) in the protoplasts was determined by neutron activation analysis. The result shows that REEs can enter the cells of the plant.展开更多
Mesoporous silicas have a very attractive ability of sorption and enrichment of metal ions due to their huge surface area and facile functionalization by organic ligands. In this work, phosphonate-amino hifunctionaliz...Mesoporous silicas have a very attractive ability of sorption and enrichment of metal ions due to their huge surface area and facile functionalization by organic ligands. In this work, phosphonate-amino hifunctionalized mesoporous silica SBA-15 (PA-SBA-15) as U(VI) sorbent was fabricated through post-grafting method. The obtained mesoporous silica was character- ized by SEM, XRD, NMR and nitrogen sorption/desorption experiments, which revealed the existence of ordered mesoporous structure with uniform pore diameter and large surface area. The adsorptivity of PA-SBA-15 for U(VI) from aqueous solution was investigated using batch sorption technique under different experimental conditions. The preliminary results show that the U(VI) sorption by PA-SBA-15 is very quick with equilibrium time of less than 1 h, and the U(VI) uptake is as large as 373 mg/g at pH 5.5 under 95℃. The sorption isotherm has been successfully modeled by the Langmuir isotherm, suggesting a monolayer homogeneous sorption of U(VI) in PA-SBA-15. The sorption is pH-dependent due to the pH-dependent charge of sorbent in the aqueous solution. The thermodynamics research shows that the sorption is a feasible and endothermic process. Based on these results, PA-SBA-15 could be a promising solid phase sorbent for highly-efficient removal of U(VI) ions from waste water and enrichment of U(VI) from a solution at a very low level.展开更多
The interactions between nanoparticles and living cells were investigated by an imaging technique of fluorescence microscopy. For this pur- pose, the C60 derivative C60(C(COOH)2)2, a thera- peutic agent for degenerati...The interactions between nanoparticles and living cells were investigated by an imaging technique of fluorescence microscopy. For this pur- pose, the C60 derivative C60(C(COOH)2)2, a thera- peutic agent for degeneration diseases of central nervous system, was synthesized, purified and characterized. Its interaction with the living cell and penetration of the cellular membrane were in situ studied using the real time imaging technique, and its potential cytotoxicity was also examined by flow cy- tometry. The results indicate that C60(C(COOH)2)2 can easily enter cells, and is mainly located in cytoplasm by fluorescein labeling. Furthermore, C60(C(COOH)2)2 can carry the molecule that cannot cross cellular membranes into cells, because fluo- rescein compound itself cannot enter the cell or ad- here to membrane. At concentrations ranging from 1×10?2 to 1×102 mg/L, C60(C(COOH)2)2 does not show any detectable cytotoxicity.展开更多
The unique physical and chemical properties of room-temperature ionic liquids(RTILs) have recently received increasing attention as solvent alternatives for possible application in the field of nuclear industry, parti...The unique physical and chemical properties of room-temperature ionic liquids(RTILs) have recently received increasing attention as solvent alternatives for possible application in the field of nuclear industry, particularly in liquid-liquid separations of radioactive nuclides. We investigated solvent extraction of U(VI) from aqueous solutions into a commonly used ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([C4mim][NTf2]) using trioctylphosphine oxide(TOPO) as an extractant. The effects of contact time, TOPO concentration, acidity, and nitrate ions on the U(VI) extraction are discussed in detail. The extraction mechanism was proposed based on slope analysis and UV-Vis measurement. The results clearly show that TOPO/[C4mim][NTf2] provides a highly efficient extraction of U(VI) from aqueous solution under near-neutral conditions. When the TOPO concentration was 10 mmol/L, the extraction of 1 mmol/L U(VI) was almost complete(> 97%). Both the extraction efficiency and distribution coefficient were much larger than in conventional organic solvents such as dichloromethane. Slope analysis confirmed that three TOPO molecules in [C4mim][NTf2] bound with one U(VI) ion and one nitrate ion was also involved in the complexation and formed the final extracted species of [UO2(NO3)(TOPO)3]+. Such a complex suggests that extraction occurs by a cation-exchange mode, which was subsequently evidenced by the fact that the concentration of C4mim+ in the aqueous phase increased linearly with the extraction percent of U(VI) recorded by UV-Vis measurement.展开更多
基金National Natural Science Foundation(21671195,51902320,51902319)China Postdoctoral Science Foundation(2020M680082)+2 种基金International Partnership Program of Chinese Academy of Sciences(174433KYSB20190019)Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01003)Ningbo Top-talent Team Program,Ningbo Municipal Bureau of Science and Technology(2018A610005)。
基金Supported by National Natural Science Foundation of China (Grant No. 40472018)the Chinese Academy of Sciences (Grant No. 21039751)
文摘The complex patterns of trace elements including Ir and isotope distributions in the three K/T sections of the Nanxiong Basin prove the existence of two environmental events in the latest Cretaceous and earliest Paleocene. The first geochemical environmental event occurred at about 2 Ma prior to the K/T boundary interval, where the dinosaur diversity was hardly reduced, except that a number of patho-logical eggshells appeared. The second one was larger and occurred just at and near the Creta-ceous-Paleogene (K/T) boundary. The extinction of the dinosaurs spread out within 250 ka with major extinction beginning at the boundary interval. This is even later than their extinction in Montana, North America and in India. The cause of the dinosaur extinction may be the result of a complex multiple events brought about by the coincidence of global environment change marked by multiple Ir and δ 18O anomalies, and environmental poisoning characterized by other trace elements derived from the local source. Successive short- and long-term conditions of geochemically induced environmental stress negatively affected the reproductive process and thus contributed to the extinction of the dinosaurs.
文摘A preliminary study on the speciation of rare earth elements in plant cells has been carried out by molecular activation analysis (MAA). Mesophyll protoplasts of Brassica napus were isolated by enzymatic digestion. After being washed with isosmotic solution containing EDTA for several times, the protoplasts were purified by gradient centrifugation. Then the concentration of rare earth elements (REEs) in the protoplasts was determined by neutron activation analysis. The result shows that REEs can enter the cells of the plant.
基金supported by the National Natural Science Foundation of China (91026007)the "Strategic Priority Research program" of the Chinese Academy of Sciences (XDA03010401,XDA03010403)
文摘Mesoporous silicas have a very attractive ability of sorption and enrichment of metal ions due to their huge surface area and facile functionalization by organic ligands. In this work, phosphonate-amino hifunctionalized mesoporous silica SBA-15 (PA-SBA-15) as U(VI) sorbent was fabricated through post-grafting method. The obtained mesoporous silica was character- ized by SEM, XRD, NMR and nitrogen sorption/desorption experiments, which revealed the existence of ordered mesoporous structure with uniform pore diameter and large surface area. The adsorptivity of PA-SBA-15 for U(VI) from aqueous solution was investigated using batch sorption technique under different experimental conditions. The preliminary results show that the U(VI) sorption by PA-SBA-15 is very quick with equilibrium time of less than 1 h, and the U(VI) uptake is as large as 373 mg/g at pH 5.5 under 95℃. The sorption isotherm has been successfully modeled by the Langmuir isotherm, suggesting a monolayer homogeneous sorption of U(VI) in PA-SBA-15. The sorption is pH-dependent due to the pH-dependent charge of sorbent in the aqueous solution. The thermodynamics research shows that the sorption is a feasible and endothermic process. Based on these results, PA-SBA-15 could be a promising solid phase sorbent for highly-efficient removal of U(VI) ions from waste water and enrichment of U(VI) from a solution at a very low level.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 10490180 and 90406024)the 0utstanding Young Natural Scientist Foundation (Grant Nos. 10525524 and 20225516)+1 种基金 the Ministry of Science and Technology (Grant No. 2005CB724703)the Directionality Program of the Chinese Academy of Sciences (Grant No. KJCX-SW-H12).
文摘The interactions between nanoparticles and living cells were investigated by an imaging technique of fluorescence microscopy. For this pur- pose, the C60 derivative C60(C(COOH)2)2, a thera- peutic agent for degeneration diseases of central nervous system, was synthesized, purified and characterized. Its interaction with the living cell and penetration of the cellular membrane were in situ studied using the real time imaging technique, and its potential cytotoxicity was also examined by flow cy- tometry. The results indicate that C60(C(COOH)2)2 can easily enter cells, and is mainly located in cytoplasm by fluorescein labeling. Furthermore, C60(C(COOH)2)2 can carry the molecule that cannot cross cellular membranes into cells, because fluo- rescein compound itself cannot enter the cell or ad- here to membrane. At concentrations ranging from 1×10?2 to 1×102 mg/L, C60(C(COOH)2)2 does not show any detectable cytotoxicity.
基金supported by the National Natural Science Foundation of China(91326202,11105162,91126006,11275219)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA030104)
文摘The unique physical and chemical properties of room-temperature ionic liquids(RTILs) have recently received increasing attention as solvent alternatives for possible application in the field of nuclear industry, particularly in liquid-liquid separations of radioactive nuclides. We investigated solvent extraction of U(VI) from aqueous solutions into a commonly used ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([C4mim][NTf2]) using trioctylphosphine oxide(TOPO) as an extractant. The effects of contact time, TOPO concentration, acidity, and nitrate ions on the U(VI) extraction are discussed in detail. The extraction mechanism was proposed based on slope analysis and UV-Vis measurement. The results clearly show that TOPO/[C4mim][NTf2] provides a highly efficient extraction of U(VI) from aqueous solution under near-neutral conditions. When the TOPO concentration was 10 mmol/L, the extraction of 1 mmol/L U(VI) was almost complete(> 97%). Both the extraction efficiency and distribution coefficient were much larger than in conventional organic solvents such as dichloromethane. Slope analysis confirmed that three TOPO molecules in [C4mim][NTf2] bound with one U(VI) ion and one nitrate ion was also involved in the complexation and formed the final extracted species of [UO2(NO3)(TOPO)3]+. Such a complex suggests that extraction occurs by a cation-exchange mode, which was subsequently evidenced by the fact that the concentration of C4mim+ in the aqueous phase increased linearly with the extraction percent of U(VI) recorded by UV-Vis measurement.