The powder crystals of RMnO3(R=Er, Tm) with hexagonal and orthorhombic structures were prepared under hydrothermal conditions. The different structural phases of the title compounds were controllably formed from dif...The powder crystals of RMnO3(R=Er, Tm) with hexagonal and orthorhombic structures were prepared under hydrothermal conditions. The different structural phases of the title compounds were controllably formed from different kinds of precursors at different reaction temperatures. All of the samples were characterized by powder X-ray diffraction, scanning electron microscopy, inductively coupled plasma analysis, and variable temperature magnetic susceptibility. Their structures were refined by Rietveld method from powder X-ray diffraction data. The measurement of magnetic behavior shows antiferromagnetic orderings at Neel temperatures around 80 and 40 K for the hexagonal and orthorhombic phases, respectively.展开更多
For preparing the phenobarbital(PHN) molecularly imprinted polymers(MIPs) with higher adsorption and selectivity properties, we used the M062 X/6-31 g(d,p) method of density functional theory to predict the various pr...For preparing the phenobarbital(PHN) molecularly imprinted polymers(MIPs) with higher adsorption and selectivity properties, we used the M062 X/6-31 g(d,p) method of density functional theory to predict the various properties of PHN-MIPs. Here PHN is as the imprinted molecule and acrylamide(AM) as the functional monomer. The ethylene glycol dimethacrylate,trimethylolpropane trimethacrylate, divinyl benzene, and pentaerythritol trimethacrylate are as the cross-linking agents, respectively. The acetonitrile, chloroform, toluene, and tetrahydrofuran are used as the solvents, respectively. The configurations of the molecular imprinting self-assembly system for PHN and AM have been simulated to study their bonding sites, binding energy, amount of hydrogen bond, and interaction mechanism. The essence of imprinting interaction for PHN and AM has been revealed by the atomic in the molecule theory. Meanwhile, the analogues of PHN were used to discuss the selectivity property of the stable PHN-AM complex. The results show that the PHN interacts with AM through hydrogen bonds. When the imprinting molar ratio of PHN-AM is1:6 and the THF is as the solvent, the amount of their hydrogen bonds is the most, the binding energy is the lowest, and their configuration is the most stable. In comparison with the other cross-linking agents(EGDMA, TRIM, and DVB), the PETA is more suitable for PHN-MIPs. The selective property of PHN-MIP to PHN is excellent when PHN and DMBA exist at the same time.展开更多
The solid-phase photocataKtic degradation of polyvinyl chloride(PVC)plastic with AgNbO_(3)/Fe_(2)O_(3) is studied under visible-light irradiation.The PVC-(AgNbO_(3)/Fe_(2)O_(3))samples are characterized by X-ray photo...The solid-phase photocataKtic degradation of polyvinyl chloride(PVC)plastic with AgNbO_(3)/Fe_(2)O_(3) is studied under visible-light irradiation.The PVC-(AgNbO_(3)/Fe_(2)O_(3))samples are characterized by X-ray photoelectron spectroscope(XPS),scanning electron microscope(SEM),gas chromatography(GC),and UV-vis diffusion reflectance spectra(UV-vis DRS).The photocatalytic properties of PVC-(AgNbO_(3)/Fe_(2)O_(3))samples are systematically investigated.More amounts of generated CO2,greater texture change and higher weight loss rate were exhibited in the system of PVC-(AgNbO_(3)/Fe_(2)O_(3))than pure PVC film.The weight loss rate is ten times higher than that of pure PVC film,which reaches to 46.53%with optimum amount of O.5wt% Fe_(2)O_(3).Active radicals generate primarily on the surface of Fe_(2)O_(3) particles,which cause composite plastic decomposition on the PVC-(AgNbO_(3)/Fe_(2)O_(3))interface and extend into polymer interor.The study provides a new promising way to degrade the plastic waste under visible-light.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.20631010 and 20771042)
文摘The powder crystals of RMnO3(R=Er, Tm) with hexagonal and orthorhombic structures were prepared under hydrothermal conditions. The different structural phases of the title compounds were controllably formed from different kinds of precursors at different reaction temperatures. All of the samples were characterized by powder X-ray diffraction, scanning electron microscopy, inductively coupled plasma analysis, and variable temperature magnetic susceptibility. Their structures were refined by Rietveld method from powder X-ray diffraction data. The measurement of magnetic behavior shows antiferromagnetic orderings at Neel temperatures around 80 and 40 K for the hexagonal and orthorhombic phases, respectively.
基金supported by the Science and Technology Research Project for Education Department of Jilin Province(No.JJKH20170299KJ)the Science and Technology Development Project of Jilin Province(No.20170520145JH)
文摘For preparing the phenobarbital(PHN) molecularly imprinted polymers(MIPs) with higher adsorption and selectivity properties, we used the M062 X/6-31 g(d,p) method of density functional theory to predict the various properties of PHN-MIPs. Here PHN is as the imprinted molecule and acrylamide(AM) as the functional monomer. The ethylene glycol dimethacrylate,trimethylolpropane trimethacrylate, divinyl benzene, and pentaerythritol trimethacrylate are as the cross-linking agents, respectively. The acetonitrile, chloroform, toluene, and tetrahydrofuran are used as the solvents, respectively. The configurations of the molecular imprinting self-assembly system for PHN and AM have been simulated to study their bonding sites, binding energy, amount of hydrogen bond, and interaction mechanism. The essence of imprinting interaction for PHN and AM has been revealed by the atomic in the molecule theory. Meanwhile, the analogues of PHN were used to discuss the selectivity property of the stable PHN-AM complex. The results show that the PHN interacts with AM through hydrogen bonds. When the imprinting molar ratio of PHN-AM is1:6 and the THF is as the solvent, the amount of their hydrogen bonds is the most, the binding energy is the lowest, and their configuration is the most stable. In comparison with the other cross-linking agents(EGDMA, TRIM, and DVB), the PETA is more suitable for PHN-MIPs. The selective property of PHN-MIP to PHN is excellent when PHN and DMBA exist at the same time.
基金Supported by Science and Technology Department of Jilin Province(20200101018JC,20190303086SF and 20200201011JC)。
文摘The solid-phase photocataKtic degradation of polyvinyl chloride(PVC)plastic with AgNbO_(3)/Fe_(2)O_(3) is studied under visible-light irradiation.The PVC-(AgNbO_(3)/Fe_(2)O_(3))samples are characterized by X-ray photoelectron spectroscope(XPS),scanning electron microscope(SEM),gas chromatography(GC),and UV-vis diffusion reflectance spectra(UV-vis DRS).The photocatalytic properties of PVC-(AgNbO_(3)/Fe_(2)O_(3))samples are systematically investigated.More amounts of generated CO2,greater texture change and higher weight loss rate were exhibited in the system of PVC-(AgNbO_(3)/Fe_(2)O_(3))than pure PVC film.The weight loss rate is ten times higher than that of pure PVC film,which reaches to 46.53%with optimum amount of O.5wt% Fe_(2)O_(3).Active radicals generate primarily on the surface of Fe_(2)O_(3) particles,which cause composite plastic decomposition on the PVC-(AgNbO_(3)/Fe_(2)O_(3))interface and extend into polymer interor.The study provides a new promising way to degrade the plastic waste under visible-light.