Renal cell carcinoma is the most common cancer of the kidney, and resistant to traditional therapies. The aim of this study is to investigate the effects of hydroxyapatite nanoparticles on human renal cell carcinoma 7...Renal cell carcinoma is the most common cancer of the kidney, and resistant to traditional therapies. The aim of this study is to investigate the effects of hydroxyapatite nanoparticles on human renal cell carcinoma 786-0 cells. Cell proliferation was assessed with an 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide(MTT) staining kit. The apoptosis assay was assessed with an FITC Annexin V Apoptosis Detection Kit. Caspase-3 and caspase-12 were detected by immunocytochemical staining and semi-quantitative RT-PCR. Cell wound healing assay was used to ensure cell motility. Matrigel invasion assay was analysed via transwell chambers. Our results showed that hydroxyapatite nanoparticles significantly reduced cell proliferation, invasion and induced apoptosis of 786-0 cells. The inhibiting action may have relation with up-regulated caspase-12, leading the cells to apoptosis. This study suggests that hydroxyapatite nanoparticles may be an effective and delivery system for renal cell carcinoma therapy.展开更多
基金Supported by the National Natural Science Foundation of China(Nos30801354 and 30970791)the Fundamental Research Funds for the Central Universities of China(No200812)
文摘Renal cell carcinoma is the most common cancer of the kidney, and resistant to traditional therapies. The aim of this study is to investigate the effects of hydroxyapatite nanoparticles on human renal cell carcinoma 786-0 cells. Cell proliferation was assessed with an 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide(MTT) staining kit. The apoptosis assay was assessed with an FITC Annexin V Apoptosis Detection Kit. Caspase-3 and caspase-12 were detected by immunocytochemical staining and semi-quantitative RT-PCR. Cell wound healing assay was used to ensure cell motility. Matrigel invasion assay was analysed via transwell chambers. Our results showed that hydroxyapatite nanoparticles significantly reduced cell proliferation, invasion and induced apoptosis of 786-0 cells. The inhibiting action may have relation with up-regulated caspase-12, leading the cells to apoptosis. This study suggests that hydroxyapatite nanoparticles may be an effective and delivery system for renal cell carcinoma therapy.