Combining a Ti-diffusion periodically poled lithium niobate(PPLN)waveguide with a Sagnac interferometer,two opposite directions type-II spontaneous parametric down conversions(SPDC)occur coherently and yield a high br...Combining a Ti-diffusion periodically poled lithium niobate(PPLN)waveguide with a Sagnac interferometer,two opposite directions type-II spontaneous parametric down conversions(SPDC)occur coherently and yield a high brightness,high stability polarization entanglement source.The source produces degenerate photon pairs at 1540.4 nm with a brightness of B=(1.36±0.03)×10^(6) pairs/(s·nm·m W).We perform quantum state tomography to reconstruct the density matrix of the output state and obtain a fidelity of F=0.983±0.001.The high brightness and phase stability of our waveguide source enable a wide range of quantum information experiments operating at a low pump power as well as hold the advantage in mass production which can promote the practical applications of quantum technologies.展开更多
By utilizing the extended phase-matching(EPM)method,we investigate the generation of single photons with high spectral-purity in a magnesium-doped periodically-poled lithium niobate(MgO:PPLN)crystal via the spontaneou...By utilizing the extended phase-matching(EPM)method,we investigate the generation of single photons with high spectral-purity in a magnesium-doped periodically-poled lithium niobate(MgO:PPLN)crystal via the spontaneous parametric down-conversion(SPDC)process.By adjusting the temperature and pump wavelength,the wavelength of the single photons can be tuned from telecom to mid-infrared(MIR)wavelengths,for which the spectral-purity can be above 0.95 with high transmission filters.In experiments,we engineer a MgO:PPLN with poling period of 20.35µm which emits the EPM photon pair centered at 1496.6 nm and 1644.0 nm and carry out the joint spectral intensity(JSI)and Glauber’s second-order self-correlation measurements to characterize the spectral purity.The results are in good agreement with the numerical simulations.Our work may provide a valuable approach for the generation of spectrally pure single photons at a wide range of wavelengths which is competent for various photonic quantum technologies.展开更多
Quantum random number generators(QRNGs)can provide genuine randomness by exploiting the intrinsic probabilistic nature of quantum mechanics,which play important roles in many applications.However,the true randomness a...Quantum random number generators(QRNGs)can provide genuine randomness by exploiting the intrinsic probabilistic nature of quantum mechanics,which play important roles in many applications.However,the true randomness acquisition could be subjected to attacks from untrusted devices involved or their deviations from the theoretical modeling in real-life implementation.We propose and experimentally demonstrate a source-device-independent QRNG,which enables one to access true random bits with an untrusted source device.The random bits are generated by measuring the arrival time of either photon of the time–energy entangled photon pairs produced from spontaneous parametric downconversion,where the entanglement is testified through the observation of nonlocal dispersion cancellation.In experiment,we extract a generation rate of 4 Mbps by a modified entropic uncertainty relation,which can be improved to gigabits per second by using advanced single-photon detectors.Our approach provides a promising candidate for QRNGs with no characterization or error-prone source devices in practice.展开更多
Narrowband photonic entanglement is a crucial resource for long-distance quantum communication and quantum information processing,including quantum memories.We demonstrate the first polarization entanglement with 7.1 ...Narrowband photonic entanglement is a crucial resource for long-distance quantum communication and quantum information processing,including quantum memories.We demonstrate the first polarization entanglement with 7.1 GHz inherent bandwidth by counterpropagating domain engineering,which is also confirmed by Hong–Ou–Mandel interference with 155-ps base-to-base dip width and(97.1±0.59)%high visibility.The entanglement is harnessed with 18.5-standard-deviations Bell inequality violation,and further characterized with state tomography of(95.71±0.61)%fidelity.Such narrowband entanglement sets a cornerstone for practical quantum information applications.展开更多
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFF0712800 and 2019YFA0308700)。
文摘Combining a Ti-diffusion periodically poled lithium niobate(PPLN)waveguide with a Sagnac interferometer,two opposite directions type-II spontaneous parametric down conversions(SPDC)occur coherently and yield a high brightness,high stability polarization entanglement source.The source produces degenerate photon pairs at 1540.4 nm with a brightness of B=(1.36±0.03)×10^(6) pairs/(s·nm·m W).We perform quantum state tomography to reconstruct the density matrix of the output state and obtain a fidelity of F=0.983±0.001.The high brightness and phase stability of our waveguide source enable a wide range of quantum information experiments operating at a low pump power as well as hold the advantage in mass production which can promote the practical applications of quantum technologies.
基金supported by the National Basic Research Program of China(Grant Nos.2017YFA0303700 and 2019YFA0308700)the National Natural Science Foundation of China(Grant Nos.11627810 and 11690031)。
文摘By utilizing the extended phase-matching(EPM)method,we investigate the generation of single photons with high spectral-purity in a magnesium-doped periodically-poled lithium niobate(MgO:PPLN)crystal via the spontaneous parametric down-conversion(SPDC)process.By adjusting the temperature and pump wavelength,the wavelength of the single photons can be tuned from telecom to mid-infrared(MIR)wavelengths,for which the spectral-purity can be above 0.95 with high transmission filters.In experiments,we engineer a MgO:PPLN with poling period of 20.35µm which emits the EPM photon pair centered at 1496.6 nm and 1644.0 nm and carry out the joint spectral intensity(JSI)and Glauber’s second-order self-correlation measurements to characterize the spectral purity.The results are in good agreement with the numerical simulations.Our work may provide a valuable approach for the generation of spectrally pure single photons at a wide range of wavelengths which is competent for various photonic quantum technologies.
基金supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301500)+1 种基金the Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No. BK20192001)the National Natural Science Foundation of China (Grant Nos. 51890861 and 11974178).
文摘Quantum random number generators(QRNGs)can provide genuine randomness by exploiting the intrinsic probabilistic nature of quantum mechanics,which play important roles in many applications.However,the true randomness acquisition could be subjected to attacks from untrusted devices involved or their deviations from the theoretical modeling in real-life implementation.We propose and experimentally demonstrate a source-device-independent QRNG,which enables one to access true random bits with an untrusted source device.The random bits are generated by measuring the arrival time of either photon of the time–energy entangled photon pairs produced from spontaneous parametric downconversion,where the entanglement is testified through the observation of nonlocal dispersion cancellation.In experiment,we extract a generation rate of 4 Mbps by a modified entropic uncertainty relation,which can be improved to gigabits per second by using advanced single-photon detectors.Our approach provides a promising candidate for QRNGs with no characterization or error-prone source devices in practice.
基金National Key Research and Development Program of China(2017YFA0303700)Key R&D Program of Guangdong Province(2018B030329001)National Natural Science Foundation of China(11474050,11674169,11974178,51890861).
文摘Narrowband photonic entanglement is a crucial resource for long-distance quantum communication and quantum information processing,including quantum memories.We demonstrate the first polarization entanglement with 7.1 GHz inherent bandwidth by counterpropagating domain engineering,which is also confirmed by Hong–Ou–Mandel interference with 155-ps base-to-base dip width and(97.1±0.59)%high visibility.The entanglement is harnessed with 18.5-standard-deviations Bell inequality violation,and further characterized with state tomography of(95.71±0.61)%fidelity.Such narrowband entanglement sets a cornerstone for practical quantum information applications.