期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
静息态功能磁共振观察基底节区脑梗死后不同频段低频振幅变化 被引量:1
1
作者 阮杏林 车春晖 +2 位作者 林海龙 陈华俊 潘晓东 《福建医科大学学报》 2020年第6期411-416,共6页
目的应用静息态功能磁共振成像(rs-fMRI)技术探讨急性基底节区脑梗死患者在不同频段(经典频段:0.01~0.08 Hz;slow-4:0.027~0.073 Hz;slow-5:0.01~0.027 Hz)下低频振幅(ALFF)的改变。方法对13例急性基底节区脑梗死患者(脑梗死组)及14例... 目的应用静息态功能磁共振成像(rs-fMRI)技术探讨急性基底节区脑梗死患者在不同频段(经典频段:0.01~0.08 Hz;slow-4:0.027~0.073 Hz;slow-5:0.01~0.027 Hz)下低频振幅(ALFF)的改变。方法对13例急性基底节区脑梗死患者(脑梗死组)及14例对照组进行rs-fMRI扫描,比较在不同频段下两组间ALFF值的差别,并对存在显著差别的脑区ALFF值与美国国立卫生研究院卒中量表(NIHSS)评分进行相关性分析。结果与对照组比较,在经典频段、slow-4频段下,脑梗死组的ALFF值显著增高区域为右侧额叶,显著降低区域为右侧小脑后叶;在slow-5频段下,ALFF值显著降低区域为右侧小脑后叶。在slow-5频段下,脑梗死组NIHSS评分与右侧小脑后叶的平均ALFF值呈负相关。结论基底节区脑梗死后右侧额叶及右侧小脑后叶脑区自发性神经元活动发生变化,右侧小脑后叶的自发性神经元活动与基底节区脑梗死功能损害存在相关性。 展开更多
关键词 梗死 基底神经节疾病/治疗 磁共振成像 低频振幅
下载PDF
肌萎缩侧索硬化症患者SQSTM1突变分析
2
作者 林明星 林婉挥 +4 位作者 刘昌云 冯淑艳 黄华品 车春晖 邹漳钰 《福建医科大学学报》 2021年第3期201-209,共9页
目的探索肌萎缩侧索硬化症(ALS)中编码结合泛素并调节核因子激活信号通路多功能蛋白(SQSTM1)基因突变患者的表型特征。方法对15例家族性ALS(FALS)先证者和275例散发性ALS(SALS)患者SQSTM1全部外显子进行二代测序,所得变异根据美国ACMG... 目的探索肌萎缩侧索硬化症(ALS)中编码结合泛素并调节核因子激活信号通路多功能蛋白(SQSTM1)基因突变患者的表型特征。方法对15例家族性ALS(FALS)先证者和275例散发性ALS(SALS)患者SQSTM1全部外显子进行二代测序,所得变异根据美国ACMG指南进行致病性分析,检索Pubmed、Medline及Web of Science文献数据库中已报道的SQSTM1突变的ALS患者,对SQSTM1突变的ALS患者的表型进行综述。结果(1)290例中,3例SALS患者分别携带1个SQSTM1杂合错义突变,即c.653G>A,p.G218D、c.655G>A,p.A219T和c.923C>T,p.P308L。其中c.923C>T,p.P308L为已报道的致病突变,患者临床表现为单纯ALS不伴认知功能障碍,其他2个位点为非致病性。(2)检索数据库并进行文献综述,共发现71例SQSTM1突变的ALS患者。SQSTM1基因在FALS的突变率约2.70%,其中高加索人群2.89%,亚洲人群尚未见报道;SQATM1基因在SALS的突变率约1.3%,其中高加索人群1.5%,亚洲人群1.09%。SQSTM1突变主要有错义突变(66/71)、剪切突变(2/71)、内含子缺失(1/71)和缺失突变(2/71)。71例中有56例具有详细临床表型,其中经典ALS 22例、进行性延髓麻痹(PBP)11例、连枷臂综合征(FAS)2例、连枷腿综合征(FLS)7例、进行性脊肌萎缩症(PMA)2例,共患额颞叶痴呆(FTD)/帕金森病(PD)、佩吉特氏骨病(PDB)7例。从突变方式看,剪切突变的临床表型相对较轻、生存期较长,经典ALS的临床表型异质性大。SQSTM1高频突变位点是p.A33V(7/71)、p.K238E(6/71)、p.L238G(7/71)和p.P392L(7/71),同一位点的临床表型差异也很大。结论SQSTM1在家族性、散发性ALS中以及不同种族中的突变率存在差异,其临床表型异质性较大;SQSTM1突变可导致多系统蛋白病(MSP)。本研究发现1例ALS携带SQSTM1基因突变,该位点(p.P308L)在ALS中为首次报道。 展开更多
关键词 肌萎缩侧索硬化症 SQSTM1 P308L 突变表型 亚洲 高加索
下载PDF
Factors Associated with Generic and Disease-specific Quality of Life in Epilepsy
3
作者 HUANG HuaPin che chunhui +2 位作者 LIU ChangYun JIANG Fang MAO XiaoHong 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2011年第3期228-233,共6页
Objective To investigate the association between quality of life (QOL) and sociodemographic factors, clinical seizure factors, depression and anxiety in patients suffering from epilepsy. Methods We examined 141 cons... Objective To investigate the association between quality of life (QOL) and sociodemographic factors, clinical seizure factors, depression and anxiety in patients suffering from epilepsy. Methods We examined 141 consecutive patients with epilepsy (mean age 25.8+9.6, 61.7% male). All patients completed the Self-Rating Depression Scale, Self-Rating Anxiety Scale , WHOQOL-BREF and O, OLIE-31(Chinese version). Multiple linear regression analyses were applied to investigate factors impact on O.OL. Results The results revealed that scores on two domains of the WHOO.OL-BREF (i.e., physical and psychological domains, P〈O.05) were significantly lower in the epilepsy group compared with the control group. Multiple regression analyses showed that anxiety, depression and course explained approximately 40% of the variance in patients' QOL. Anxiety was consistently the strongest predictor of lower scores on almost all QOL domains. In addition, the severity of depressive symptoms was significantly associated with lower scores across many QOL domains. Conclusion Our findings suggest that QOLIE scores might be substantially affected by the presence and severity of anxiety symptoms and, to a lesser degree, of depressive symptoms and prolonged course of illness. In contrast, clinical seizure variables had a weaker association with QOL Healthcare professionals should be aware of the significance of patients' emotional state and of the role it plays in their O, OL. 展开更多
关键词 EPILEPSY Quality of life ANXIETY DEPRESSION
下载PDF
脑电图和振幅整合脑电图分别联合神经元特异性烯醇化酶评估心肺复苏后脑功能预后的比较 被引量:15
4
作者 陆剑平 车春晖 黄华品 《中华医学杂志》 CAS CSCD 北大核心 2020年第21期1629-1633,共5页
目的比较脑电图(EEG)分级与振幅整合脑电图(aEEG)模式分级分别联合血清神经元特异性烯醇化酶(NSE)对心肺复苏(CPR)后患者脑功能预后的预测价值。方法选择2015年1月至2019年6月福建医科大学附属协和医院收治的CPR后患者。收集患者的一般... 目的比较脑电图(EEG)分级与振幅整合脑电图(aEEG)模式分级分别联合血清神经元特异性烯醇化酶(NSE)对心肺复苏(CPR)后患者脑功能预后的预测价值。方法选择2015年1月至2019年6月福建医科大学附属协和医院收治的CPR后患者。收集患者的一般资料、格拉斯哥昏迷评分(GCS)、血清NSE、EEG分级和aEEG模式分级。根据CPR后3个月脑功能量表评分(CPC)将患者分为预后不良组(CPC 3~5分)和预后良好组(CPC 1~2分),比较两组相关指标的差异;绘制受试者工作特征(ROC)曲线,评价EEG模式分级联合血清NSE和aEEG分级联合血清NSE对CPR后脑功能预后的预测能力。结果共纳入57例患者,其中男性34例,女性23例;年龄(65±19)岁;EEG Young分级中,1级16例(28.1%),2~5级24例(42.1%),6级17例(29.8%);aEEG模式分级中,Ⅰ级11例(19.3%),Ⅱ级25例(43.9%),Ⅲ级21例(36.8%)。发病后3个月预后不良33例,预后良好24例。不同预后两组患者性别、年龄、住院时间比较差异无统计学意义,不同预后两组患者EEG分级、aEEG分级、GCS分级和NSE比较差异均有统计学意义(均P<0.05)。ROC曲线分析显示,NSE、EEG和aEEG分级预测CPR后患者脑功能预后的ROC曲线下面积(AUC)分别为0.81、0.82和0.85(均P<0.01),EEG分级联合血清NSE和aEEG分级联合血清NSE预测CPR后患者脑功能预后的AUC分别为0.90和0.92(均P<0.01)。EEG分级联合血清NSE最佳截断值为3.6时,敏感度为92.1%,特异度为77.0%;aEEG模式分级联合血清NSE最佳截断值为4.5时,敏感度为95.8%,特异度为79.0%。结论aEEG模式分级联合血清NSE较EEG分级联合血清NSE能够更准确地预测CPR后患者的脑功能,操作简单,适宜临床应用。 展开更多
关键词 心肺复苏 振幅整合脑电图 神经元特异性烯醇化酶 脑功能预后
原文传递
Network traffic classification based on ensemble learning and co-training 被引量:5
5
作者 HE HaiTao LUO XiaoNan +2 位作者 MA FeiTeng che chunhui WANG JianMin 《Science in China(Series F)》 2009年第2期338-346,共9页
Classification of network traffic is the essential step for many network researches. However, with the rapid evolution of Internet applications the effectiveness of the port-based or payload-based identification appro... Classification of network traffic is the essential step for many network researches. However, with the rapid evolution of Internet applications the effectiveness of the port-based or payload-based identification approaches has been greatly diminished in recent years. And many researchers begin to turn their attentions to an alternative machine learning based method. This paper presents a novel machine learning-based classification model, which combines ensemble learning paradigm with co-training techniques. Compared to previous approaches, most of which only employed single classifier, multiple classifters and semi-supervised learning are applied in our method and it mainly helps to overcome three shortcomings: limited flow accuracy rate, weak adaptability and huge demand of labeled training set. In this paper, statistical characteristics of IP flows are extracted from the packet level traces to establish the feature set, then the classification model is crested and tested and the empirical results prove its feasibility and effectiveness. 展开更多
关键词 traffic classification ensemble learning CO-TRAINING network measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部