Polyolefins,as one of the most productive synthetic polymer materials,have been widely used in industry and daily life[1-2].However,due to their"non-polar"nature,polyolefins have poor compatibility and adhes...Polyolefins,as one of the most productive synthetic polymer materials,have been widely used in industry and daily life[1-2].However,due to their"non-polar"nature,polyolefins have poor compatibility and adhesion to polar materials,limiting their application in many fields[3-5].展开更多
The directional solidification process of SCN-3wt%Salol transparent alloy is investigated in the presence of the shear flow at the liquid-solid interface.It is found that the shear flow induces a stabilizing effect on...The directional solidification process of SCN-3wt%Salol transparent alloy is investigated in the presence of the shear flow at the liquid-solid interface.It is found that the shear flow induces a stabilizing effect on planar interface.At higher pulling rates,oscillation of the growth pattern together with fluctuation of the growth velocity takes place.With the increase of the pulling rate,the interface growth pattern transits from"planar-cellular"oscillation to"cellular-dendritic"oscillation,and the periodicity increases.The modification of the growth pattern is due to the effect of the shear flow on solute distribution,and the time and history dependent character of interface morphology evolution also plays an important role in the formation of the oscillating growth pattern.展开更多
An experimental apparatus consisting of a crystal growth room and a crystal growth observation system was developed for the study of the effect of the gravity convection perpendicular to the growth direction on the gr...An experimental apparatus consisting of a crystal growth room and a crystal growth observation system was developed for the study of the effect of the gravity convection perpendicular to the growth direction on the growth process by use of model alloy succinonitrile (SCN)-5wt%ethanol. It was found that the convection improves the stability of the interface and causes the downstream alternation of the cell growth direction because of the dual effect of the Stokes force and the gravity. The second dendrite arm facing the flow comes into being earlier than that at an- other side when the interface transforms cell to dendrite. Then the dendrite at the side facing the flow comes into being earlier. The second dendrite arm facing the flow grows faster and is more developed than that at another side. In addition, the primary dendrite arm spacing increases and the dendrite tip radius decreases un- der the gravity convection.展开更多
Morphological evolution of the solid-liquid interface near grain boundaries has been studied during directional solidification of succinonitrile-based transparent alloys (SCN-0.9wt%DCB). Experimental results show that...Morphological evolution of the solid-liquid interface near grain boundaries has been studied during directional solidification of succinonitrile-based transparent alloys (SCN-0.9wt%DCB). Experimental results show that the grain boundary provides the starting point of morphological instability of the solid-liquid interface. The initial perturbation near the grain boundary is significantly larger than other perturbations on the interface. The initial shape of the interface and the competition between the thermal direction and preferred crystalline orientations determine the subsequent growth pattern selections. The temporal variations of the curvature radius of cell/ridge tips near the grain boundary have also been studied when the instability occurs. This process is divided into three parts. As the pulling velocity increases, dendrites at the grain boundary grow in two different directions to form a bicrystal microstructure. Side branches on either side of the dendrite exhibit different growth patterns.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.22001004)。
文摘Polyolefins,as one of the most productive synthetic polymer materials,have been widely used in industry and daily life[1-2].However,due to their"non-polar"nature,polyolefins have poor compatibility and adhesion to polar materials,limiting their application in many fields[3-5].
基金Supported by the National Natural Science Foundation of China(Grant Nos.50331040 and 50702046)
文摘The directional solidification process of SCN-3wt%Salol transparent alloy is investigated in the presence of the shear flow at the liquid-solid interface.It is found that the shear flow induces a stabilizing effect on planar interface.At higher pulling rates,oscillation of the growth pattern together with fluctuation of the growth velocity takes place.With the increase of the pulling rate,the interface growth pattern transits from"planar-cellular"oscillation to"cellular-dendritic"oscillation,and the periodicity increases.The modification of the growth pattern is due to the effect of the shear flow on solute distribution,and the time and history dependent character of interface morphology evolution also plays an important role in the formation of the oscillating growth pattern.
基金the National Natural Science Foundation of China (Grant Nos. 50331040 and 60171043)
文摘An experimental apparatus consisting of a crystal growth room and a crystal growth observation system was developed for the study of the effect of the gravity convection perpendicular to the growth direction on the growth process by use of model alloy succinonitrile (SCN)-5wt%ethanol. It was found that the convection improves the stability of the interface and causes the downstream alternation of the cell growth direction because of the dual effect of the Stokes force and the gravity. The second dendrite arm facing the flow comes into being earlier than that at an- other side when the interface transforms cell to dendrite. Then the dendrite at the side facing the flow comes into being earlier. The second dendrite arm facing the flow grows faster and is more developed than that at another side. In addition, the primary dendrite arm spacing increases and the dendrite tip radius decreases un- der the gravity convection.
基金supported by the National Natural Science Foundation of China (Grant Nos.61078057 and 51172183)NPU Foundation for Fundamental Research (Grant Nos.NPU-FFR-JC201048 and JC201155)+1 种基金the Science & Technology Program of Shanghai Maritime University (Grant No.20110054)the Project of the Excellent Youth of Shanghai (WANG CaiFang)
文摘Morphological evolution of the solid-liquid interface near grain boundaries has been studied during directional solidification of succinonitrile-based transparent alloys (SCN-0.9wt%DCB). Experimental results show that the grain boundary provides the starting point of morphological instability of the solid-liquid interface. The initial perturbation near the grain boundary is significantly larger than other perturbations on the interface. The initial shape of the interface and the competition between the thermal direction and preferred crystalline orientations determine the subsequent growth pattern selections. The temporal variations of the curvature radius of cell/ridge tips near the grain boundary have also been studied when the instability occurs. This process is divided into three parts. As the pulling velocity increases, dendrites at the grain boundary grow in two different directions to form a bicrystal microstructure. Side branches on either side of the dendrite exhibit different growth patterns.