In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding proce...In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.展开更多
Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-lay...Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-layer heterogeneity.To mitigate such anisotropy,it is of great significance to understand the effects of processing parameters on the property evolution and thus metallurgy of fabrication process.This research proposes one-factor-at-a-time experiment to investigate the influences of laser power and scanning speed on the surface qual-ity,microstructures and mechanical properties of selective laser melted Ti-6Al-4V parts.Surface quality is assessed by roughness around the printings while mechanical properties are evaluated through microhardness and tensile strengths.Phases in microstructure are quantified by XRD to correlate with mechanical properties.Fracture morphology is analyzed to understand the effect of defects and microstructure on mechanical performance.The optimized parameter corresponding to best surface quality and mechanical properties has been found respect-ively in laser power of 190 W and scanning speed of 800 mm/s.After optimization,surface roughness has decreased by 44.47%for upper surface.Yielding strength,tensile strength and elongation rate have improved by 13.17%,43.34%and 64.51%,respectively,with similar hardness and Young’s modulus.In addition,heterogeneity of mechanical properties has great improvement by a range of 31.63%-92.68%.展开更多
For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings ...For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings in the rapid heating and cooling process.The response surface methodology(RSM)was used to predict coating cracks by changing the powder ratio,energy density,and preheating temperature,which obtained the relevant mathematical model.After that,the sensitivity of the crack length to process parameters was analyzed based on the sensitivity analysis method.The effect of Ni60/WC composite powder process parameters on the surface quality was revealed in laser cladding.The crack length first decreased and then increased,and the Smooth decreased with the increased powder ratio.The crack length and Smooth increased with the increased energy density.The crack length decreased and Smooth increased with the increased preheating temperature.Sensitivity analysis showed that the crack length and Smooth were the most sensitive to the powder ratio.Therefore,the process parameters were reasonably selected to control the surface quality.The mathematical model and sensitivity analysis method in the work could improve the surface quality,which provided a theoretical basis for the prediction and control of laser cladding cracks.展开更多
基金supported by Major Special Projects of Science and Technology in Fujian Province,(Grant No.2020HZ03018)Natural Science Foundation of Fujian Province(Grant No.2020J01873).
文摘In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.
基金Project was supported by the Natural Science Foundation of Fujian Province(Grant No.2020J01873)Science and Technology Major Project of Fujian Province(Grant No.2020HZ03018)+1 种基金Fujian Provincial Foreign Cooperation Project of Science and Technology(Grant No.2020I1003)Fujian Provincial Special Project for Marine Economy Development(Grant No.2021-517).
文摘Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-layer heterogeneity.To mitigate such anisotropy,it is of great significance to understand the effects of processing parameters on the property evolution and thus metallurgy of fabrication process.This research proposes one-factor-at-a-time experiment to investigate the influences of laser power and scanning speed on the surface qual-ity,microstructures and mechanical properties of selective laser melted Ti-6Al-4V parts.Surface quality is assessed by roughness around the printings while mechanical properties are evaluated through microhardness and tensile strengths.Phases in microstructure are quantified by XRD to correlate with mechanical properties.Fracture morphology is analyzed to understand the effect of defects and microstructure on mechanical performance.The optimized parameter corresponding to best surface quality and mechanical properties has been found respect-ively in laser power of 190 W and scanning speed of 800 mm/s.After optimization,surface roughness has decreased by 44.47%for upper surface.Yielding strength,tensile strength and elongation rate have improved by 13.17%,43.34%and 64.51%,respectively,with similar hardness and Young’s modulus.In addition,heterogeneity of mechanical properties has great improvement by a range of 31.63%-92.68%.
基金supported by Science and Technology Major Project of Fujian Province(Grant No.2020HZ03018).
文摘For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings in the rapid heating and cooling process.The response surface methodology(RSM)was used to predict coating cracks by changing the powder ratio,energy density,and preheating temperature,which obtained the relevant mathematical model.After that,the sensitivity of the crack length to process parameters was analyzed based on the sensitivity analysis method.The effect of Ni60/WC composite powder process parameters on the surface quality was revealed in laser cladding.The crack length first decreased and then increased,and the Smooth decreased with the increased powder ratio.The crack length and Smooth increased with the increased energy density.The crack length decreased and Smooth increased with the increased preheating temperature.Sensitivity analysis showed that the crack length and Smooth were the most sensitive to the powder ratio.Therefore,the process parameters were reasonably selected to control the surface quality.The mathematical model and sensitivity analysis method in the work could improve the surface quality,which provided a theoretical basis for the prediction and control of laser cladding cracks.