期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
茄子秆生物炭联合黑麦草对土壤镉-芘复合污染修复的影响 被引量:12
1
作者 李桂荣 陈富凯 +2 位作者 贾胜勇 王宗硕 郭泽楠 《河南农业科学》 北大核心 2020年第9期51-61,共11页
针对当前我国农田土壤中广泛存在的重金属和多环芳烃污染问题,采用盆栽方法,考察茄子秆生物炭联合黑麦草对去除土壤重金属镉(Cd)与多环芳烃芘(Pyrene)复合污染及对土壤微生物群落结构的影响,以期揭示茄子秆生物炭联合黑麦草对土壤镉-芘... 针对当前我国农田土壤中广泛存在的重金属和多环芳烃污染问题,采用盆栽方法,考察茄子秆生物炭联合黑麦草对去除土壤重金属镉(Cd)与多环芳烃芘(Pyrene)复合污染及对土壤微生物群落结构的影响,以期揭示茄子秆生物炭联合黑麦草对土壤镉-芘复合污染土壤的修复机制。结果显示,在Cd、Pyrene含量分别为16.8、71.04 mg/kg条件下,添加生物炭土壤的Cd和Pyrene去除率在第60天分别达到21.88%和23.55%,较无生物炭添加的对照分别提高17.71%与14.28%。在生物炭添加量30 mg/g及种植黑麦草密度为13.5 mg/cm^2条件下,土壤Cd和Pyrene去除率最高分别达到20.59%与70.58%。高通量测序分析表明,生物炭能够提高土壤微生物丰富度,生物炭联合黑麦草明显影响土壤微生物群落结构。Cd-Pyrene致使土壤优势菌相对含量下降,其中,鞘氨醇单胞菌相对含量下降3.08个百分点,芽单胞菌相对含量下降1.69个百分点;但施用生物炭能够使耐Cd菌和高效降解Pyrene菌鞘氨醇单胞菌相对含量提高1.22个百分点,生物炭联合黑麦草使Pyrene降解菌假单胞菌、肠杆菌相对含量分别提高160、414倍。因此,茄子秆生物炭联合黑麦草将有效修复Cd和Pyrene复合污染土壤并增加Cd-Pyrene降解菌相对含量。 展开更多
关键词 茄子秆生物炭 黑麦草 镉-芘复合污染 土壤修复 土壤微生物群落 多样性 高通量测序
下载PDF
NSNO:Neumann Series Neural Operator for Solving Helmholtz Equations in Inhomogeneous Medium 被引量:1
2
作者 chen fukai LIU Ziyang +2 位作者 LIN Guochang chen Junqing SHI Zuoqiang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期413-440,共28页
In this paper,the authors propose Neumann series neural operator(NSNO)to learn the solution operator of Helmholtz equation from inhomogeneity coefficients and source terms to solutions.Helmholtz equation is a crucial ... In this paper,the authors propose Neumann series neural operator(NSNO)to learn the solution operator of Helmholtz equation from inhomogeneity coefficients and source terms to solutions.Helmholtz equation is a crucial partial differential equation(PDE)with applications in various scientific and engineering fields.However,efficient solver of Helmholtz equation is still a big challenge especially in the case of high wavenumber.Recently,deep learning has shown great potential in solving PDEs especially in learning solution operators.Inspired by Neumann series in Helmholtz equation,the authors design a novel network architecture in which U-Net is embedded inside to capture the multiscale feature.Extensive experiments show that the proposed NSNO significantly outperforms the state-of-the-art FNO with at least 60%lower relative L^(2)-error,especially in the large wavenumber case,and has 50%lower computational cost and less data requirement.Moreover,NSNO can be used as the surrogate model in inverse scattering problems.Numerical tests show that NSNO is able to give comparable results with traditional finite difference forward solver while the computational cost is reduced tremendously. 展开更多
关键词 Helmholtz equation inverse problem neumann series neural network solution operator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部