A sample from the Jurassic Tamulangou Fm.and two comparison samples from the Cretaceous Fm.were used to document the hydrocarbon generation kinetics and phase behaviors at two heating rates using the confined gold tub...A sample from the Jurassic Tamulangou Fm.and two comparison samples from the Cretaceous Fm.were used to document the hydrocarbon generation kinetics and phase behaviors at two heating rates using the confined gold tube system.The results show that the different heating rates affect the reaction rates,paths and levels of organic matter evolution.The average activation energy and dominant frequency activation energy of liquid hydrocarbon are significantly lower than those of gaseous.Moreover,igneous intrusion had a positive effect on the blooming,enrichment and preservation of organic matter,promoting a Ro increase of 0.09%–1.07%in the Jurassic Tamulangou Fm.Two models were used to simulate the normal and abnormal evolution caused by thermal events combined hydrocarbon generation kinetic parameters.Thermal simulation analysis shows that oil generation was initially slow and then increased rapidly until a burial depth of 1500 m was reached at~128 Ma.The largest hydrocarbon expulsion began at~120 Ma,corresponding to a burial depth of 2450 m.The maximum cumulative yield is 510 mg/g TOC,and it is still in the peak period of hydrocarbon generation,which demonstrates a favorable potential for hydrocarbon exploration.展开更多
Based on analysis of core observation, thin sections, cathodoluminescence, scanning electron microscope(SEM), etc., and geochemical testing of stable carbon and oxygen isotopes composition, element content, fluid incl...Based on analysis of core observation, thin sections, cathodoluminescence, scanning electron microscope(SEM), etc., and geochemical testing of stable carbon and oxygen isotopes composition, element content, fluid inclusions, and formation water, the fluid interaction mechanism and diagenetic reformation of fracture-pore basement reservoirs of epimetamorphic pyroclastic rock in the Beier Sag, Hailar Basin were studied. The results show that:(1) Two suites of reservoirs were developed in the basement, the weathering section and interior section, the interior section has a good reservoir zone reaching the standard of type I reservoir.(2) The secondary pores are formed by dissolution of carbonate minerals, feldspar, and tuff etc.(3) The diagenetic fluids include atmospheric freshwater, deep magmatic hydrothermal fluid, organic acids and hydrocarbon-bearing fluids.(4) The reservoir diagenetic reformation can be divided into four stages: initial consolidation, early supergene weathering-leaching, middle structural fracture-cementation-dissolution, and late organic acid-magmatic hydrothermal superimposed dissolution. Among them, the second and fourth stages are the stages for the formation of weathering crust and interior dissolution pore-cave reservoirs, respectively.展开更多
基金sponsored by the Subordinate subject of the National Major Science and Technology Project“Development of Large Oil and Gas Fields and coalbed methane”(2017ZX05001-003)supported by the National Natural Science Foundation of China”Simulation of Dynamic Process for Shale Oil Sweet Deposition in Lucaogou Formation,Jimusar Sag”(42072119).
基金supported by the National Natural Science Foundation of China(Grant No.42072119)Science and Technology Project of Petro China(Grant No.101017kt1604003x20)。
文摘A sample from the Jurassic Tamulangou Fm.and two comparison samples from the Cretaceous Fm.were used to document the hydrocarbon generation kinetics and phase behaviors at two heating rates using the confined gold tube system.The results show that the different heating rates affect the reaction rates,paths and levels of organic matter evolution.The average activation energy and dominant frequency activation energy of liquid hydrocarbon are significantly lower than those of gaseous.Moreover,igneous intrusion had a positive effect on the blooming,enrichment and preservation of organic matter,promoting a Ro increase of 0.09%–1.07%in the Jurassic Tamulangou Fm.Two models were used to simulate the normal and abnormal evolution caused by thermal events combined hydrocarbon generation kinetic parameters.Thermal simulation analysis shows that oil generation was initially slow and then increased rapidly until a burial depth of 1500 m was reached at~128 Ma.The largest hydrocarbon expulsion began at~120 Ma,corresponding to a burial depth of 2450 m.The maximum cumulative yield is 510 mg/g TOC,and it is still in the peak period of hydrocarbon generation,which demonstrates a favorable potential for hydrocarbon exploration.
基金Supported by the PetroChina Science and Technology Project(2017-5307034-000002).
文摘Based on analysis of core observation, thin sections, cathodoluminescence, scanning electron microscope(SEM), etc., and geochemical testing of stable carbon and oxygen isotopes composition, element content, fluid inclusions, and formation water, the fluid interaction mechanism and diagenetic reformation of fracture-pore basement reservoirs of epimetamorphic pyroclastic rock in the Beier Sag, Hailar Basin were studied. The results show that:(1) Two suites of reservoirs were developed in the basement, the weathering section and interior section, the interior section has a good reservoir zone reaching the standard of type I reservoir.(2) The secondary pores are formed by dissolution of carbonate minerals, feldspar, and tuff etc.(3) The diagenetic fluids include atmospheric freshwater, deep magmatic hydrothermal fluid, organic acids and hydrocarbon-bearing fluids.(4) The reservoir diagenetic reformation can be divided into four stages: initial consolidation, early supergene weathering-leaching, middle structural fracture-cementation-dissolution, and late organic acid-magmatic hydrothermal superimposed dissolution. Among them, the second and fourth stages are the stages for the formation of weathering crust and interior dissolution pore-cave reservoirs, respectively.