期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MIMO线性系统输入输出信号统计特征的双谱评定方法 被引量:1
1
作者 陆勇星 陈怀海 王桂锋 《振动工程学报》 EI CSCD 北大核心 2020年第1期99-104,共6页
基于高阶统计量具备处理随机信号的特性,提出了一种利用三阶谱(双谱)评定MIMO线性系统时域输入输出信号统计特征的新方法。通过建立线性系统双谱数学模型,根据系统响应、所测得的频响函数以及离散信号的双谱数值估计算法,经逆运算获得... 基于高阶统计量具备处理随机信号的特性,提出了一种利用三阶谱(双谱)评定MIMO线性系统时域输入输出信号统计特征的新方法。通过建立线性系统双谱数学模型,根据系统响应、所测得的频响函数以及离散信号的双谱数值估计算法,经逆运算获得系统的双谱驱动信号,随后利用高阶谱对高斯随机信号的盲性判定其输入信号的高斯性。将上述方法与采用传统相位随机化法(对功率谱添加随机相位)所获得的驱动信号分别应用于一悬臂梁模拟控制系统中,通过对输入信号的分析及控制结果的比较,发现基于双谱所生成的时域随机驱动信号呈现出较强的非高斯性且收敛速度更快。对于输出信号统计特征的评定,提出从输入信号与系统频带接近的程度入手,再次利用高阶统计量对高斯随机信号的盲性进行定性判定,对于无法判别满足何种非高斯统计分布特征的,不管是对于输入信号还是输出信号,一律采用绘制信号的概率分布特征曲线进行定量评定。 展开更多
关键词 随机振动 高斯随机信号 高阶统计量 双谱 概率分布特征曲线
下载PDF
A novel sparse filtering approach based on time-frequency feature extraction and softmax regression for intelligent fault diagnosis under different speeds 被引量:6
2
作者 ZHANG Zhong-wei chen huai-hai +1 位作者 LI Shun-ming WANG Jin-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1607-1618,共12页
Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects... Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods. 展开更多
关键词 intelligent fault diagnosis short time Fourier transform sparse filtering softmax regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部