The principal characteristics of the tides are investigated by a shipborne acoustic Doppler current Profiler at a fixed station located in the Beibu Gulf from 4 to 14 April 2003. Data analysis indicates that the diurn...The principal characteristics of the tides are investigated by a shipborne acoustic Doppler current Profiler at a fixed station located in the Beibu Gulf from 4 to 14 April 2003. Data analysis indicates that the diurnal tidal currents dominate local current variations at the observing site. Except the barotropic ME constituent, four principal tides comprise both back-and-forth barotropic and baroclinic tidal currents. The baroclinic tidal ellipse parameters vary with depth, showing complicate features, rather than monotonous features being figured. For baroclinic tidal constituents, vertical modes are different to each other. Similarly, the semi-major axes of the tidal constituents vary with depth. In the lower layer, a nonlinear regression approach is used to calculate and obtain the SEMA profiles of diurnal tidal constituents. Results show that in the thin bottom boundary layer, all of the parameters vary drastically with depth, totally distinguished from the vertical profiles above.展开更多
基金This work was jointly sponsored by the National Natural Science Foundation of China under contract Nos 40406006 and 40506008 the Chinese Academy of Sciences under contract No. kzcx3 - sw - 227.
文摘The principal characteristics of the tides are investigated by a shipborne acoustic Doppler current Profiler at a fixed station located in the Beibu Gulf from 4 to 14 April 2003. Data analysis indicates that the diurnal tidal currents dominate local current variations at the observing site. Except the barotropic ME constituent, four principal tides comprise both back-and-forth barotropic and baroclinic tidal currents. The baroclinic tidal ellipse parameters vary with depth, showing complicate features, rather than monotonous features being figured. For baroclinic tidal constituents, vertical modes are different to each other. Similarly, the semi-major axes of the tidal constituents vary with depth. In the lower layer, a nonlinear regression approach is used to calculate and obtain the SEMA profiles of diurnal tidal constituents. Results show that in the thin bottom boundary layer, all of the parameters vary drastically with depth, totally distinguished from the vertical profiles above.