期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Remaining useful life prediction for a nonlinear multi-degradation system with public noise 被引量:6
1
作者 ZHANG Hanwen chen maoyin ZHOU Donghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期429-435,共7页
To predict the remaining useful life(RUL) for a class of nonlinear multi-degradation systems, a method is presented. In the real industrial processes, systems are usually composed by several parts or components, and t... To predict the remaining useful life(RUL) for a class of nonlinear multi-degradation systems, a method is presented. In the real industrial processes, systems are usually composed by several parts or components, and these parts or components are working in the same environment, thus the degradations of these parts or components will be influenced by common factors. To describe such a phenomenon in degradations, a multi-degradation model with public noise is proposed. To identify the degradation states and the unknown parameters, an iterative estimation method is proposed by using the Kalman filter and the expectation maximization(EM) algorithm. Next, with known thresholds,the RUL of each degradation can be predicted by using the first hitting time(FHT). In addition, the RUL of the whole system can be obtained by a Copula function. Finally, a practical case is used to demonstrate the method proposed. 展开更多
关键词 remaining useful life(RUL) multi-degradation system public noise nonlinear degradation process
下载PDF
Precise control of a magnetically suspended double-gimbal control moment gyroscope using differential geometry decoupling method 被引量:3
2
作者 chen Xiaocen chen maoyin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1017-1028,共12页
Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and s... Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and strong coupled properties. This paper proposes a novel linearization and decoupling method based on differential geometry theory and combines it with the internal model controller (IMC) to guarantee the system robustness to the external disturbance and parameter uncertainty. Furthermore, by introducing the dynamic compensation for the inner-gimbal rate-servo system and the magnetically suspended rotor (MSR) system only, we can eliminate the influence of the unmodeled dynamics to the decoupling control accuracy as well as save costs and inhibit noises effectively. The simulation results verify the nice decoupling and robustness performance of the system using the proposed method. 展开更多
关键词 Differential geometry decoupling Dynamic compensation Internal model controller MSDGCMG Spacecraft control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部