The metabolic network has become a hot topic in the area of system biology and flux-based analysis plays a very important role in understanding the characteristics of organism metabolic networks. We review mainly the ...The metabolic network has become a hot topic in the area of system biology and flux-based analysis plays a very important role in understanding the characteristics of organism metabolic networks. We review mainly the static methods for analyzing metabolic networks such as flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), regulatory on / off minimization (ROOM), and dynamic flux balance analysis with linear quadratic regulator (DFBA-LQR). Then several kinds of commonly used software for flux analysis are introduced briefly and compared with each other. Finally, we highlight the applications of metabolic network flux analysis, especially its usage combined with other biological characteristics and its usage for drug design. The idea of combining the analysis of metabolic networks and other biochemical data has been gradually promoted and used in several aspects such as the combination of metabolic flux and the regulation of gene expression, the influence of protein evolution caused by metabolic flux, the relationship between metabolic flux and the topological characteristics, the optimization of metabolic engineering. More comprehensive and accurate properties of metabolic networks will be obtained by integrating metabolic flux analysis, network topological characteristics and dynamic modeling.展开更多
基金supported by the National Natural Science Foundation of China (30800199, 20773085 and 30770502)National High-Tech Research and Development Program of China (2007AA02Z333)
文摘The metabolic network has become a hot topic in the area of system biology and flux-based analysis plays a very important role in understanding the characteristics of organism metabolic networks. We review mainly the static methods for analyzing metabolic networks such as flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), regulatory on / off minimization (ROOM), and dynamic flux balance analysis with linear quadratic regulator (DFBA-LQR). Then several kinds of commonly used software for flux analysis are introduced briefly and compared with each other. Finally, we highlight the applications of metabolic network flux analysis, especially its usage combined with other biological characteristics and its usage for drug design. The idea of combining the analysis of metabolic networks and other biochemical data has been gradually promoted and used in several aspects such as the combination of metabolic flux and the regulation of gene expression, the influence of protein evolution caused by metabolic flux, the relationship between metabolic flux and the topological characteristics, the optimization of metabolic engineering. More comprehensive and accurate properties of metabolic networks will be obtained by integrating metabolic flux analysis, network topological characteristics and dynamic modeling.