期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MnHCF/MnO_2 Core-shell Nanostructures as Cathode Material for Supercapacitors with High Energy Density
1
作者 WANG Yu ZHONG Hao +2 位作者 YAN Nan HU Haibo chen qianwang 《矿物学报》 CAS CSCD 北大核心 2013年第S1期104-104,共1页
A nanocomposite of manganese dioxide coated manganese hexacyanoferrate was synthesized by a facile co-precipitation method and tested as active electrode material for an electrochemical supercapacitor. A way called &q... A nanocomposite of manganese dioxide coated manganese hexacyanoferrate was synthesized by a facile co-precipitation method and tested as active electrode material for an electrochemical supercapacitor. A way called "Deep electro-oxidation" was used to generate manganese dioxide coated layer for stabilizing the electrode material. The structure and ingredient of the resulting MnHCF/MnO2 composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray Photoelectron Spectroscopy. Electrochemical testing showed a capacitance of 225.6 F/g at a sweep rate of 5 mV/s within a voltage range of 1.3 V, and high energy density of 37.2 Wh/kg at a current density of 0.5 A/g in galvanostatic charge/discharge cycling. It is suggested that the two different components, manganese hexacyanoferrate core and manganese dioxide shell, lead to an integrated electrochemical behavior, and an enhanced capacitor. The electrochemical testing and corresponding XPS analysis also demonstrated that the manganese coordinated by cyanide groups via nitrogen atoms in MnHCF did not get involved in the charge storage process during potential cycles. 展开更多
关键词 SUPERCAPACITORS deep electro-oxidation manganese HEXACYANOFERRATE CORE-SHELL NANOSTRUCTURES
下载PDF
Hollow Porous SiO_2 Nanocubes with Enhanced Lithium Storage Properties
2
作者 YAN Nan chen qianwang 《矿物学报》 CAS CSCD 北大核心 2013年第S1期69-69,共1页
The high theoretical capacity and low discharge potential of silicon have attracted much attention on Si-based anodes. Herein, hollow porous SiO2 nanocubes have been prepared via a two-step hard-template process and e... The high theoretical capacity and low discharge potential of silicon have attracted much attention on Si-based anodes. Herein, hollow porous SiO2 nanocubes have been prepared via a two-step hard-template process and evaluated as electrode materials for lithium-ion batteries. The hollow porous SiO2 nanocubes exhibited a reversible capacity of 919 mAh/g over 30 cycles. The excellent property could be attributed to the unique hollow nanostructure with large volume interior and numerous crevices in the shell, which could accommodate the volume change and alleviate the structural strain during Li ions insertion and extraction, as well as allow rapid access of Li ions during charge/discharge cycling. It is found that the formation of irreversible or reversible lithium silicates in the anodes determines the capacity of a deep-cycle battery, fast transportation of Li ions in hollow porous SiO2 nanocubes is preferred to form Li2O and Si, contributing to the high reversible capacity. The hollow porous SiO2 nanocubes have great potential applications for Li-ion batteries due to their remarkable electrochemical performance and low cost. 展开更多
关键词 HOLLOW POROUS SIO2 LI-ION battery ANODE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部