Drought and salt stresses,the major environmental abiotic stresses in agriculture worldwide,affect plant growth,crop productivity,and quality.Therefore,developing crops with higher drought and salt tolerance is highly...Drought and salt stresses,the major environmental abiotic stresses in agriculture worldwide,affect plant growth,crop productivity,and quality.Therefore,developing crops with higher drought and salt tolerance is highly desirable.This study reported the isolation,biological function,and molecular characterization of a novel maspardin gene,OsMas1,from rice.The OsMas1 protein was localized to the cytoplasm.The expression levels of OsMas1 were up-regulated under mannitol,PEG6000,NaCl,and abscisic acid(ABA) treatments in rice.The OsMas1 gene was introduced into the rice cultivar Zhonghua 11(wild type,WT).OsMas1-overexpression(OsMas1-OE) plants exhibited significantly enhanced salt and drought tolerance;in contrast,OsMas1-interference(OsMas1-RNAi) plants exhibited decreased tolerance to salt and drought stresses,compared with WT.OsMas1-OE plants exhibited enhanced hypersensitivity,while OsMas1-RNAi plants showed less sensitivity to exogenous ABA treatment at both germination and post-germination stages.ABA,proline and K+ contents and superoxide dismutase(SOD),catalase(CAT),peroxidase(POD),and photosynthesis activities were significantly increased.In contrast,malonaldehyde(MDA),hydrogen peroxide(H2O2),superoxide anion radical(O2-··),and Na+ contents were significantly decreased in OsMas1-OE plants compared with OsMas1-RNAi and WT plants.Overexpression of OsMas1 up-regulated the genes involved in ABA signaling,proline biosynthesis,reactive oxygen species(ROS)-scavenging system,photosynthesis,and ion transport under salt and drought stresses.Our results indicate that the OsMas1 gene improves salt and drought tolerance in rice,which may serve as a candidate gene for enhancing crop resistance to abiotic stresses.展开更多
Rye(Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits. The 1RS chromosome from the German c...Rye(Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits. The 1RS chromosome from the German cultivated rye variety Petkus is critical in wheat breeding. However, its weakened disease resistance highlights the need to identify new resources. In the present study, a novel derived line called D27 was developed from common wheat and Mexico Rye.Cytological observations characterized the karyotype of D27 as 2n=42=21 Ⅱ. Genomic in situ hybridization indicated that a pair of whole-arm translocated Mexico Rye chromosomes were inherited typically in the mitotic and meiosis stages of D27. Experiments using fluorescence in situ hybridization(FISH) and gliadin electrophoresis showed that D27 lacked wheat 1DS chromosomes. They were replaced by 1RS chromosomes of Mexico Rye, supported by wheat simple-sequence repeat markers, rye sequence characterized amplified region markers, and wheat 40K SNP array analysis.The wheat 1DS chromosomes could not be detected by molecular markers and wheat SNP array, but the presence of rye 1RS chromosomes was confirmed. Agronomic trait assessments indicated that D27 had a higher tiller number and enhanced stripe rust and powdery mildew resistance. In addition, dough properties analysis showed that replacing 1DS led to higher viscosity and lower dough elasticity in D27, which was beneficial for cake making. In conclusion, the novel cytogenetically stable common wheat–Mexico Rye T1DL·1RS translocation line D27 offers excellent potential as outstanding germplasm in wheat breeding programs focusing on disease resistance and yield improvement. Additionally,it can be valuable for researching the rye 1RS chromosome’s genetic diversity.展开更多
Psathyrostachys huashanica Keng(2n=2x=14,NsNs)is regarded as a valuable wild relative species for common wheat cultivar improvement because of its abundant beneficial agronomic traits.However,although the development ...Psathyrostachys huashanica Keng(2n=2x=14,NsNs)is regarded as a valuable wild relative species for common wheat cultivar improvement because of its abundant beneficial agronomic traits.However,although the development of many wheat–P.huashanica-derived lines provides a germplasm base for the transfer of excellent traits,the lag in the identification of P.huashanica chromosomes in the wheat background has limited the study of these lines.In this study,three novel nondenaturing fluorescence in situ hybridization(ND-FISH)-positive oligo probes were developed.Among them,HS-TZ3 and HS-TZ4 could specifically hybridize with P.huashanica chromosomes,mainly in the telomere area,and HS-CHTZ5 could hybridize with the chromosomal centromere area.We sequentially constructed a P.huashanica FISH karyotype and idiogram that helped identify the homologous groups of introduced P.huashanica chromosomes.In detail,1Ns and 2Ns had opposite signals on the short and long arms,3Ns,4Ns,and 7Ns had superposed two-color signals,5Ns and 6Ns had fluorescent signals only on their short arms,and 7Ns had signals on the intercalary of the long arm.In addition,we evaluated different ways to identify alien introgression lines by using low-density single nucleotide polymorphism(SNP)arrays and recommended the SNP homozygosity rate in each chromosome as a statistical pattern.The 15K SNP array is widely applicable for addition,substitution,and translocation lines,and the 40K SNP array is the most accurate for recognizing transposed intervals between wheat and alien chromosomes.Our research provided convenient methods to distinguish the homologous group of P.huashanica chromosomes in a common wheat background based on ND-FISH and SNP arrays,which is of great significance for efficiently identifying wheat–P.huashanica-derived lines and the further application of Ns chromosomes.展开更多
Take-all is a devastating soil-borne disease of wheat(Triticum aestivum L.).Cultivating resistant line is an important measure to control this disease.Psathyrostachys huashanica Keng is a valuable germplasm resource w...Take-all is a devastating soil-borne disease of wheat(Triticum aestivum L.).Cultivating resistant line is an important measure to control this disease.Psathyrostachys huashanica Keng is a valuable germplasm resource with high resistance to take-all.This study reported on a wheat-/R huashanica introgression line H148 with improved take-all resistance compared with its susceptible parent 7182.To elucidate the genetic mechanism of resistance in H148,the F_(2)genetic segregating population of H148×XN585 was constructed.The mixed genetic model analysis showed that the take-all resistance was controlled by two major genes with additive,dominant and epistasis effects.Bulked segregant analysis combined with wheat axiom 660K genotyping array analysis showed the polymorphic SNPs with take-all resistance from P.huashanica alien introgression were mainly distributed on the chromosome 2A.Genotyping of the F_(2)population using the KASP marker mapped a major QTL in an interval of 68.8-70.1 Mb on 2AS.Sixty-two genes were found in the target interval of the Chinese Spring reference genome sequence.According to the functional annotation of genes,two protein genes that can improve the systematic resistance of plant roots were predicted as candidate genes.The development of wheat-P.huashanica introgression line H148 and the resistant QTL mapping information are expected to provide some valuable references for the fine mapping of disease-resistance gene and development of take-all resistant varieties through molecular marker-assisted selection.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province, China (BK20191483)the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (20KJA180004)+2 种基金the Postgraduate Practice Innovation Program of Jiangsu Province, China (SJCX20_1339)the College Student Practice Innovation Program of Jiangsu Province, China (202111049104H, 202211049133H and 202211049138H)the Talent Introduction Research Project of Huaiyin Institute of Technology, China (Z301B16534)。
文摘Drought and salt stresses,the major environmental abiotic stresses in agriculture worldwide,affect plant growth,crop productivity,and quality.Therefore,developing crops with higher drought and salt tolerance is highly desirable.This study reported the isolation,biological function,and molecular characterization of a novel maspardin gene,OsMas1,from rice.The OsMas1 protein was localized to the cytoplasm.The expression levels of OsMas1 were up-regulated under mannitol,PEG6000,NaCl,and abscisic acid(ABA) treatments in rice.The OsMas1 gene was introduced into the rice cultivar Zhonghua 11(wild type,WT).OsMas1-overexpression(OsMas1-OE) plants exhibited significantly enhanced salt and drought tolerance;in contrast,OsMas1-interference(OsMas1-RNAi) plants exhibited decreased tolerance to salt and drought stresses,compared with WT.OsMas1-OE plants exhibited enhanced hypersensitivity,while OsMas1-RNAi plants showed less sensitivity to exogenous ABA treatment at both germination and post-germination stages.ABA,proline and K+ contents and superoxide dismutase(SOD),catalase(CAT),peroxidase(POD),and photosynthesis activities were significantly increased.In contrast,malonaldehyde(MDA),hydrogen peroxide(H2O2),superoxide anion radical(O2-··),and Na+ contents were significantly decreased in OsMas1-OE plants compared with OsMas1-RNAi and WT plants.Overexpression of OsMas1 up-regulated the genes involved in ABA signaling,proline biosynthesis,reactive oxygen species(ROS)-scavenging system,photosynthesis,and ion transport under salt and drought stresses.Our results indicate that the OsMas1 gene improves salt and drought tolerance in rice,which may serve as a candidate gene for enhancing crop resistance to abiotic stresses.
基金supported by the National Natural Science Foundation of China (31771785)the Key Research and Development Program of Shaanxi, China (2018ZDXM-NY-006)。
文摘Rye(Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits. The 1RS chromosome from the German cultivated rye variety Petkus is critical in wheat breeding. However, its weakened disease resistance highlights the need to identify new resources. In the present study, a novel derived line called D27 was developed from common wheat and Mexico Rye.Cytological observations characterized the karyotype of D27 as 2n=42=21 Ⅱ. Genomic in situ hybridization indicated that a pair of whole-arm translocated Mexico Rye chromosomes were inherited typically in the mitotic and meiosis stages of D27. Experiments using fluorescence in situ hybridization(FISH) and gliadin electrophoresis showed that D27 lacked wheat 1DS chromosomes. They were replaced by 1RS chromosomes of Mexico Rye, supported by wheat simple-sequence repeat markers, rye sequence characterized amplified region markers, and wheat 40K SNP array analysis.The wheat 1DS chromosomes could not be detected by molecular markers and wheat SNP array, but the presence of rye 1RS chromosomes was confirmed. Agronomic trait assessments indicated that D27 had a higher tiller number and enhanced stripe rust and powdery mildew resistance. In addition, dough properties analysis showed that replacing 1DS led to higher viscosity and lower dough elasticity in D27, which was beneficial for cake making. In conclusion, the novel cytogenetically stable common wheat–Mexico Rye T1DL·1RS translocation line D27 offers excellent potential as outstanding germplasm in wheat breeding programs focusing on disease resistance and yield improvement. Additionally,it can be valuable for researching the rye 1RS chromosome’s genetic diversity.
基金the National Natural Science Foundation of China(31501301)the National Key Research and Development Program of China(2018YFD0100904)+1 种基金the Natural Science Foundation of Henan Province,China(162300410077)the International Cooperation Project of Henan Province,China(172102410052)。
文摘Psathyrostachys huashanica Keng(2n=2x=14,NsNs)is regarded as a valuable wild relative species for common wheat cultivar improvement because of its abundant beneficial agronomic traits.However,although the development of many wheat–P.huashanica-derived lines provides a germplasm base for the transfer of excellent traits,the lag in the identification of P.huashanica chromosomes in the wheat background has limited the study of these lines.In this study,three novel nondenaturing fluorescence in situ hybridization(ND-FISH)-positive oligo probes were developed.Among them,HS-TZ3 and HS-TZ4 could specifically hybridize with P.huashanica chromosomes,mainly in the telomere area,and HS-CHTZ5 could hybridize with the chromosomal centromere area.We sequentially constructed a P.huashanica FISH karyotype and idiogram that helped identify the homologous groups of introduced P.huashanica chromosomes.In detail,1Ns and 2Ns had opposite signals on the short and long arms,3Ns,4Ns,and 7Ns had superposed two-color signals,5Ns and 6Ns had fluorescent signals only on their short arms,and 7Ns had signals on the intercalary of the long arm.In addition,we evaluated different ways to identify alien introgression lines by using low-density single nucleotide polymorphism(SNP)arrays and recommended the SNP homozygosity rate in each chromosome as a statistical pattern.The 15K SNP array is widely applicable for addition,substitution,and translocation lines,and the 40K SNP array is the most accurate for recognizing transposed intervals between wheat and alien chromosomes.Our research provided convenient methods to distinguish the homologous group of P.huashanica chromosomes in a common wheat background based on ND-FISH and SNP arrays,which is of great significance for efficiently identifying wheat–P.huashanica-derived lines and the further application of Ns chromosomes.
基金the National Natural Science Foundation of China(31571650 and 31771785)the National Key Research and Development Program of China(2017YFD0100701)+1 种基金the Key Projects in Shaanxi Provincial Agricultural Field,China(2018ZDXM-NY-006)the Key Research and Development Project of Shaanxi Province,China(2019ZDLNY04-05).
文摘Take-all is a devastating soil-borne disease of wheat(Triticum aestivum L.).Cultivating resistant line is an important measure to control this disease.Psathyrostachys huashanica Keng is a valuable germplasm resource with high resistance to take-all.This study reported on a wheat-/R huashanica introgression line H148 with improved take-all resistance compared with its susceptible parent 7182.To elucidate the genetic mechanism of resistance in H148,the F_(2)genetic segregating population of H148×XN585 was constructed.The mixed genetic model analysis showed that the take-all resistance was controlled by two major genes with additive,dominant and epistasis effects.Bulked segregant analysis combined with wheat axiom 660K genotyping array analysis showed the polymorphic SNPs with take-all resistance from P.huashanica alien introgression were mainly distributed on the chromosome 2A.Genotyping of the F_(2)population using the KASP marker mapped a major QTL in an interval of 68.8-70.1 Mb on 2AS.Sixty-two genes were found in the target interval of the Chinese Spring reference genome sequence.According to the functional annotation of genes,two protein genes that can improve the systematic resistance of plant roots were predicted as candidate genes.The development of wheat-P.huashanica introgression line H148 and the resistant QTL mapping information are expected to provide some valuable references for the fine mapping of disease-resistance gene and development of take-all resistant varieties through molecular marker-assisted selection.