We propose a large combined moving component composed of carbon fiber reinforced polymer(CFRP)laminates for making lightweight machine tools with high dynamic performance.The accurate dynamic prediction of composite m...We propose a large combined moving component composed of carbon fiber reinforced polymer(CFRP)laminates for making lightweight machine tools with high dynamic performance.The accurate dynamic prediction of composite machine tools is essential for the new generation machine tool.This paper aims to address two challenges in numerical dynamic modeling and the design of composite machine tools to enhance development efficiency.(1)Anisotropic composite laminates,which form the composite machine tool,exhibit coupling in various directions.We propose the generalized continuity condition of the boundary to tackle this dynamic modeling challenge.(2)Composite machine tools feature numerous composite-metal coupled structures.The mechanical model correction of isotropic metals is performed to address their dynamics.We take the example of a five-axis gantry machine tool with composite moving parts,establish a dynamic model for efficient prediction,and verify it through simulation and experimentation.The proposed method yields remarkable results,with an average relative error of only 3.85%in modal frequency prediction and a staggering 99.7%reduction in solution time compared to finite element analysis.We further discuss the dynamic performance of the machine tool under varied stacking angles and layer numbers of the composite machine tool.We propose general design criteria for composite machine tools to consider the modal frequency and manufacturing cost of machine tools.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U21B2081)。
文摘We propose a large combined moving component composed of carbon fiber reinforced polymer(CFRP)laminates for making lightweight machine tools with high dynamic performance.The accurate dynamic prediction of composite machine tools is essential for the new generation machine tool.This paper aims to address two challenges in numerical dynamic modeling and the design of composite machine tools to enhance development efficiency.(1)Anisotropic composite laminates,which form the composite machine tool,exhibit coupling in various directions.We propose the generalized continuity condition of the boundary to tackle this dynamic modeling challenge.(2)Composite machine tools feature numerous composite-metal coupled structures.The mechanical model correction of isotropic metals is performed to address their dynamics.We take the example of a five-axis gantry machine tool with composite moving parts,establish a dynamic model for efficient prediction,and verify it through simulation and experimentation.The proposed method yields remarkable results,with an average relative error of only 3.85%in modal frequency prediction and a staggering 99.7%reduction in solution time compared to finite element analysis.We further discuss the dynamic performance of the machine tool under varied stacking angles and layer numbers of the composite machine tool.We propose general design criteria for composite machine tools to consider the modal frequency and manufacturing cost of machine tools.