期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Atorvastatin Attenuates TNF-alpha Production via Heme Oxygenase-1 Pathway in LPS-stimulated RAW264.7 Macrophages 被引量:4
1
作者 WANG Xiao Qiao LUO Nian Sang +3 位作者 chen Zhong Qing LIN Yong Qing GU Miao Ning chen yang xin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第10期786-793,共8页
Objective To assess the effect of atorvastatin on lipopolysaccharide (LPS)-induced TNF-a production in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated in different LPS concentrations or at different ... Objective To assess the effect of atorvastatin on lipopolysaccharide (LPS)-induced TNF-a production in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated in different LPS concentrations or at different time points with or without atorvastatin. TNF-a level in supernatant was measured. Expressions of TNF-a mRNA and protein and heme oxygenase-1 (HO-1) were detected by ELISA, PCR, and Western blot, respectively. HO activity was assayed. Results LPS significantly increased the TNF-a expression and secretion in a dose- and time-dependent manner. The HO-1 activity and HO-1 expression level were significantly higher after atorvastatin treatment than before atorvastatin treatment and attenuated by SB203580 and PD98059 but not by SP600125, suggesting that the ERK and p38 mitogen-activated protein kinase (MAPK) pathways participate in regulating the above-mentioned effects of atorvastatin. Moreover, the HO-1 activity suppressed by SnPP or the HO-1 expression inhibited by siRNA significantly attenuated the effect of atorvastatin on TNF-c~ expression and production in LPS-stimulated macrophages. Conclusion Atorvastatin can attenuate LPS-induced TNF-e expression and production by activating HO-1 via the ERK and p38 MAPK pathways, suggesting that atorvastatin can be used in treatment of inflammatory diseases such as sepsis, especially in those with atherosclerotic diseases. 展开更多
关键词 LIPOPOLYSACCHARIDE Tumor necrosis factor-a Heme oxygenase-1 ATORVASTATIN
下载PDF
Carbon Monoxide Releasing Molecule Accelerates Reendothelialization after Carotid Artery Balloon Injury in Rat
2
作者 HU Qing Song chen yang xin +4 位作者 HUANG Qing Sheng DENG Bing Qing XIE Shuang Lun WANG Jing Feng NIE Ru Qiong 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第4期253-262,共10页
Objective This study was aimed to investigate the effects of carbon monoxide releasing molecule (CORM-2), a novel carbon monoxide carrier, on the reendothelialization of carotid artery in rat endothelial denudation ... Objective This study was aimed to investigate the effects of carbon monoxide releasing molecule (CORM-2), a novel carbon monoxide carrier, on the reendothelialization of carotid artery in rat endothelial denudation model. Methods Male rats subjected to carotid artery balloon injury were treated with CORM-2, inactive CORM-2 (iCORM-2) or dimethyl sulfoxide (DMSO). The reendothelialization capacity was evaluated by Evans Blue dye and the immunostaining with anti-CD31 antibody. The number of circulating endothelial progenitor cells (EPCs) was detected by flow cytometry. The proliferation, migration, and adhesion of human umbilical vein endothelial cells (HUVECs) were assessed by using [3H]thymidine, Boyden chamber and human fibronectin respectively. The expressions of protein were detected by using western blot analysis. Results CORM-2 remarkably accelerated the re-endothelialization 5 d later and inhibited neointima formation 28 d later. In addition, the number of peripheral EPCs significantly increased in CORM-2-treated rats than that in iCORM-2 or DMSO-treated rats after 5 d later. In vitro experiments, CORM-2 significantly enhanced the proliferation, migration and adhesion of HUVECs. The levels of Akt, eNOS phosphorylation, and NO generation in HUVECs were also much higher in CORM-2 treated group. Blocking of PI3K/Akt/eNOS signaling pathway markedly suppressed the enhanced migration and adhesion of HUVECs induced by CORM-2. Conclusion CORM-2 could promote endothelial repair, and inhibit neointima formation after carotid artery balloon injury, which might be associated with the function changes of HUVECs regulated by PI3K/Akt/eNOS pathway. 展开更多
关键词 Carbon monoxide REENDOTHELIALIZATION Neointima formation Vascular injury
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部