期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
雷达估测降雨水平分辨率对径流模拟的影响——以西苕溪流域为例 被引量:3
1
作者 高玉芳 陈耀登 彭涛 《热带气象学报》 CSCD 北大核心 2018年第3期347-352,共6页
天气雷达估测降雨是径流模拟和洪水预报的重要信息之一。由于雷达网格降雨存在误差,且误差随着网格水平尺度的增大而减小,因此对于径流模拟,高分辨率的雷达降雨数据并不意味着径流模拟的精度更高。采用FSS(Fractions Skill Score)方法和... 天气雷达估测降雨是径流模拟和洪水预报的重要信息之一。由于雷达网格降雨存在误差,且误差随着网格水平尺度的增大而减小,因此对于径流模拟,高分辨率的雷达降雨数据并不意味着径流模拟的精度更高。采用FSS(Fractions Skill Score)方法和HEC-HMS模型(Hydrologic Engineering Center's Hydrologic Modeling System)分析江苏省西苕溪流域雷达估测降雨水平分辨率对径流模拟的影响。在2010年和2011年夏季两场降雨实例中,雷达估测降雨在不同降雨阈值情况下,FSS达到目标精度值对应的最小有效水平尺度为2~8 km,分别以2、4、6、8 km水平分辨率的雷达估测降雨和雨量站测雨作为HEC-HMS模型输入进行径流模拟,结果表明:基于不同水平分辨率的雷达估测降雨的径流模拟结果与实测径流资料基本吻合,雷达估测降雨2、4、6、8 km水平分辨率的变化对径流模拟效果的影响不明显。 展开更多
关键词 应用气象学 雷达估测降雨 FSS方法 径流 水平分辨率
下载PDF
基于优化样本组合的集合-变分混合同化方案研究 被引量:4
2
作者 陈耀登 郭闪 +2 位作者 王元兵 臧增亮 潘晓滨 《热带气象学报》 CSCD 北大核心 2020年第4期464-476,共13页
为有效引入“流依赖”的背景场误差协方差,同时降低集合预报带来的计算量,尝试通过优选与同化时刻天气形势更相似的历史预报样本,并结合预报过程中的时间滞后样本,将两种样本引入集合-变分混合同化系统中,构建基于优选历史预报样本和时... 为有效引入“流依赖”的背景场误差协方差,同时降低集合预报带来的计算量,尝试通过优选与同化时刻天气形势更相似的历史预报样本,并结合预报过程中的时间滞后样本,将两种样本引入集合-变分混合同化系统中,构建基于优选历史预报样本和时间滞后样本的集合-变分混合同化方案。单点观测理想试验表明,优选历史预报样本结合时间滞后样本,既能够缓解样本不足所导致的采样误差,又能够为同化系统提供“流依赖”的背景场误差协方差。连续一周的循环同化及预报试验结果显示,相较于ERA5资料和探空资料,三维变分方案整体表现稍差,样本组合混合同化方案分析场和预报场的均方根误差最小,且比仅用时间滞后样本的混合同化方案有所改进;降水评分整体也表现最优,尤其对中雨和暴雨的模拟改进较明显,较好地模拟出了强降水中心的强度和位置,且改善了降水过报的问题。 展开更多
关键词 数值天气预报 资料同化 混合同化 集合样本 流依赖
下载PDF
雷达观测对应模式变量非线性特征及对四维变分同化的影响 被引量:6
3
作者 陈耀登 陈海琴 +2 位作者 孙娟珍 ZHANG Ying WANG Hong-li 《热带气象学报》 CSCD 北大核心 2018年第6期721-732,共12页
四维变分同化(4DVar)中切线性模式和伴随模式的时间积分长度即为同化时间窗的长度。为理解线性模式时间积分长度对4DVar的具体影响,在雷达观测对应变量非线性分析的基础上,进行了一系列不同时间窗(10 min、20 min和30 min)4DVar单点观... 四维变分同化(4DVar)中切线性模式和伴随模式的时间积分长度即为同化时间窗的长度。为理解线性模式时间积分长度对4DVar的具体影响,在雷达观测对应变量非线性分析的基础上,进行了一系列不同时间窗(10 min、20 min和30 min)4DVar单点观测试验和一次降雨的实际雷达同化和预报试验。从径向风同化来看:短时间窗(10 min)的风场增量更大、更局地;长时间窗(20 min、30 min)的风场增量则更具系统性特征,但会丢失一些小尺度信息,导致暴雨预报能力降低。从反射率同化来看:短时间窗对6 h内强降水预报有较明显的改善,较长时间窗甚至会降低降水预报效果。研究旨在为合理设置4DVar的同化时间窗提供参考,以有效利用高时空分辨率的雷达观测资料,又尽量减小线性化造成的误差,进而快速有效地同化雷达信息。 展开更多
关键词 四维变分 雷达资料同化 非线性 径向风 反射率
下载PDF
Wind Speed and Altitude Dependent AMDAR Observational Error and Its Impacts on Data Assimilation and Forecasting 被引量:1
4
作者 chen yao-deng ZHOU Bing-jun +1 位作者 chen Min WANG Yuan-bing 《Journal of Tropical Meteorology》 SCIE 2020年第3期261-274,共14页
Aircraft Meteorological Data Relay(AMDAR)observations have been widely used in numerical weather prediction(NWP)because of its high spatiotemporal resolution.The observational error of AMDAR is influenced by aircraft ... Aircraft Meteorological Data Relay(AMDAR)observations have been widely used in numerical weather prediction(NWP)because of its high spatiotemporal resolution.The observational error of AMDAR is influenced by aircraft flight altitude and atmospheric condition.In this study,the wind speed and altitude dependent observational error of AMDAR is estimated.The statistical results show that the temperature and the observational error in wind speeds slightly decrease as altitude increases,and the observational error in wind speed increases as wind speed increases.Pseudo single AMDAR observation assimilation tests demonstrate that the wind speed and altitude dependent observational error can provide more reasonable analysis increment.Furthermore,to assess the performance of wind speed and altitude dependent observational error on data assimilation and forecasting,two-month 3-hourly cycling data assimilation and forecast experiments based on the Weather Research and Forecasting Model(WRF)and its Data Assimilation system(WRFDA)are performed for the period during 1 September-31 October,2017.The results of the two-month 3-hourly cycling experiments indicate that new observational error improves analysis and forecast of wind field and geo-potential height,and has slight improvements on temperature.The Fractions Skill Score(FSS)of the 6-h accumulated precipitation shows that new wind speed and altitude dependent observational error leads to better precipitation forecast skill than the default observational error in the WRFDA does. 展开更多
关键词 numerical weather prediction data assimilation AMDAR observational error variational assimilation
下载PDF
The Application of a Meteo-hydrological Forecasting System with Rainfall Bias Correction in a Small and Medium-sized Catchment
5
作者 GAO Yu-fang WU Yu-qing +3 位作者 chen yao-deng YU Wei GU Tian-wei WU Ya-zhen 《Journal of Tropical Meteorology》 SCIE 2022年第2期154-168,共15页
Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and dis... Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model.To improve the accuracy of rainfall data,the successive correction method is introduced to correct the bias of rainfall,and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China.The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System(CMPAS),and the simulated streamflow from the model is further studied.It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall.By contrast,the statistical metrics of the corrected WRF rainfall are better.When the corrected WRF rainfall is used to drive the WRF-Hydro model,the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall.Among the studied events,the largest improvement of the NSE is from-0.68 to 0.67.It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast.In general,the WRF/WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment. 展开更多
关键词 streamflow forecast bias correction meteo-hydrological forecasting model WRF WRF-Hydro
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部