城市快速路的交通运行效率对于整个城市的顺畅通行至关重要,在早晚高峰期间,受限于相连接辅路的交通承载能力,快速路上较大的交通流量无法顺利从出口匝道驶入目标路段,在匝道上形成排队现象,严重时会导致匝道回溢,使快速路上车道由于被...城市快速路的交通运行效率对于整个城市的顺畅通行至关重要,在早晚高峰期间,受限于相连接辅路的交通承载能力,快速路上较大的交通流量无法顺利从出口匝道驶入目标路段,在匝道上形成排队现象,严重时会导致匝道回溢,使快速路上车道由于被占用而产生交通瓶颈,造成较大的交通出行损失.利用深度强化学习算法进行出口匝道相关联的道路交叉口信号控制优化,将信号灯设为智能体,通过设置检测器,将快速路出口匝道及交叉口的交通运行情况作为智能体获取的状态信息,引入以辅路与出口匝道剩余通行能力之比为动态修正参数的奖励函数,在保证匝道交通运行效率下,完成交叉口信号优化过程.以中国北京市东三环快速路及某关联交叉口为例,借助交通仿真平台SUMO(simulation of urban mobility)及Traci库搭建仿真环境进行实验.结果表明,基于改进A2C(advantage actor critic)算法的信号控制方法在控制效果上优于传统信号控制以及基于深度Q网络(deep Q-network,DQN)算法的信号控制方法,在出行高峰期间能够有效降低匝道回溢的发生概率,有效改善辅道相联交叉口的通行效率.展开更多
背景:近年来深度学习技术越来越多地被运用于口腔医学领域,提高了口腔影像分析的效率及准确率,推动了口腔智能医学的迅速发展。目的:基于口腔影像,阐述深度学习在口腔疾病诊断和治疗方案决策方面的研究现状、优势与局限性,探讨深度学习...背景:近年来深度学习技术越来越多地被运用于口腔医学领域,提高了口腔影像分析的效率及准确率,推动了口腔智能医学的迅速发展。目的:基于口腔影像,阐述深度学习在口腔疾病诊断和治疗方案决策方面的研究现状、优势与局限性,探讨深度学习技术背景下口腔医学变革的新方向。方法:应用计算机检索PubMed数据库中2017年1月至2024年1月发表的深度学习在口腔医学影像领域应用的相关文献,检索词为“deep learning,artificial intelligence,stomatology,oral medical imaging”等,按入组标准筛选后最终纳入80篇文献进行综述。结果与结论:(1)经典的深度学习模型包括人工神经网络、卷积神经网络、递归神经网络和生成对抗网络等,学者们以或竞争或联合的形式运用这些模型,实现更高效的对口腔医学影像的解释。(2)在口腔医学领域,疾病诊断和治疗方案的制定在很大程度上依赖医学影像资料的判读,而深度学习技术拥有强大的图像处理能力,无论是在辅助诊断龋齿、根尖周炎、牙根纵裂、牙周病、颌骨囊肿等疾病方面,还是在辅助第三磨牙拔除术、颈淋巴结清扫术等治疗操作的术前评估方面,深度学习都能帮助临床医生提高决策的准确率与效率。(3)尽管深度学习有望成为口腔疾病诊治的重要辅助工具,但它在模型技术、安全伦理、法律监管方面仍有一定的局限性,未来的研究应侧重于证明深度学习的可推广性、稳健性和临床实用性,寻找将深度学习自动化决策支持系统应用于常规临床工作流程中的最佳方式。展开更多
文摘城市快速路的交通运行效率对于整个城市的顺畅通行至关重要,在早晚高峰期间,受限于相连接辅路的交通承载能力,快速路上较大的交通流量无法顺利从出口匝道驶入目标路段,在匝道上形成排队现象,严重时会导致匝道回溢,使快速路上车道由于被占用而产生交通瓶颈,造成较大的交通出行损失.利用深度强化学习算法进行出口匝道相关联的道路交叉口信号控制优化,将信号灯设为智能体,通过设置检测器,将快速路出口匝道及交叉口的交通运行情况作为智能体获取的状态信息,引入以辅路与出口匝道剩余通行能力之比为动态修正参数的奖励函数,在保证匝道交通运行效率下,完成交叉口信号优化过程.以中国北京市东三环快速路及某关联交叉口为例,借助交通仿真平台SUMO(simulation of urban mobility)及Traci库搭建仿真环境进行实验.结果表明,基于改进A2C(advantage actor critic)算法的信号控制方法在控制效果上优于传统信号控制以及基于深度Q网络(deep Q-network,DQN)算法的信号控制方法,在出行高峰期间能够有效降低匝道回溢的发生概率,有效改善辅道相联交叉口的通行效率.
文摘背景:近年来深度学习技术越来越多地被运用于口腔医学领域,提高了口腔影像分析的效率及准确率,推动了口腔智能医学的迅速发展。目的:基于口腔影像,阐述深度学习在口腔疾病诊断和治疗方案决策方面的研究现状、优势与局限性,探讨深度学习技术背景下口腔医学变革的新方向。方法:应用计算机检索PubMed数据库中2017年1月至2024年1月发表的深度学习在口腔医学影像领域应用的相关文献,检索词为“deep learning,artificial intelligence,stomatology,oral medical imaging”等,按入组标准筛选后最终纳入80篇文献进行综述。结果与结论:(1)经典的深度学习模型包括人工神经网络、卷积神经网络、递归神经网络和生成对抗网络等,学者们以或竞争或联合的形式运用这些模型,实现更高效的对口腔医学影像的解释。(2)在口腔医学领域,疾病诊断和治疗方案的制定在很大程度上依赖医学影像资料的判读,而深度学习技术拥有强大的图像处理能力,无论是在辅助诊断龋齿、根尖周炎、牙根纵裂、牙周病、颌骨囊肿等疾病方面,还是在辅助第三磨牙拔除术、颈淋巴结清扫术等治疗操作的术前评估方面,深度学习都能帮助临床医生提高决策的准确率与效率。(3)尽管深度学习有望成为口腔疾病诊治的重要辅助工具,但它在模型技术、安全伦理、法律监管方面仍有一定的局限性,未来的研究应侧重于证明深度学习的可推广性、稳健性和临床实用性,寻找将深度学习自动化决策支持系统应用于常规临床工作流程中的最佳方式。