频域反射法可以有效探测电缆中故障,但是传统的数据处理方法只能定位电缆中故障,而不能检测故障的阻抗状态。因此,本文提出了一种基于反射系数谱相关系数的电缆故障检测方法。首先设计对比函数,然后通过对比函数与反射系数谱构建相关系...频域反射法可以有效探测电缆中故障,但是传统的数据处理方法只能定位电缆中故障,而不能检测故障的阻抗状态。因此,本文提出了一种基于反射系数谱相关系数的电缆故障检测方法。首先设计对比函数,然后通过对比函数与反射系数谱构建相关系数的函数曲线,并利用该曲线中极值的位置与类型分别检测故障的位置与阻抗状态。最后对含故障的10 kV电力电缆开展仿真研究,并对含故障的60 m 10 kV电力电缆开展实验研究。仿真与实验结果表明:基于反射系数谱相关系数的电缆故障检测方法对电缆故障的定位精度较高,并且可以准确检测故障的阻抗状态。展开更多
Walking on the water surface is an effective method for miniature robots to transport payloads with dramatically decreased interfacial drag. Current aquatic robots reported are generally actuated by a beam of focused ...Walking on the water surface is an effective method for miniature robots to transport payloads with dramatically decreased interfacial drag. Current aquatic robots reported are generally actuated by a beam of focused light that can trigger asymmetrical deformation, enabling the directional movement through horizontal momentum transfer of photoinduced actuation force to the water. However, the operations are heavily dependent on manual manipulation of the focused light, making the long-term actuation and application of the aquatic robots in vast scenarios challenging. Herein, we developed a kind of water striderinspired robot that can autonomously manage the motion on the water surface under solar irradiation, with their direction steerable by a magnetic field. The motion of this bioinspired robot on the water surface was achieved by the use of a solar cell panel as a driving module to enable propulsive motion based on the conversion of light-electric-mechanical energies. The superhydrophobic design of its leg surfaces enables the aquatic robots with weight-bearing and drag-reducing abilities. With the assistance of magnetic navigation, the bioinspired robot can continuously and controllably locomote to the oily spill floating on the water body and collect them with high efficiency. For further demonstration, the treatment of oil spills in a campus pool with high efficiency has also been achieved. This on-site oil-spill treating strategy, taking advantage of a home-made bioinspired robot actuated by natural sunlight under magnetic steering, shows great potential applications in water-body remediation.展开更多
Aphotoactive metal-organic complex[Zn2(BCbpe)2(p-DBC)2]∙5H2O(1) has been synthesized based on an olefin-containing pyridinium compound, 1-(4-carboxybenzyl)-4-[2-(4-pyridyl)-vinyl]pyridinium chloride(HBCbpeCl), and cha...Aphotoactive metal-organic complex[Zn2(BCbpe)2(p-DBC)2]∙5H2O(1) has been synthesized based on an olefin-containing pyridinium compound, 1-(4-carboxybenzyl)-4-[2-(4-pyridyl)-vinyl]pyridinium chloride(HBCbpeCl), and characterized by single-crystal X-ray diffraction, IR spectroscopy, powder X-ray diffraction and thermogravimetric analysis, respectively. In the solid state, the BCbpe ligands are packed in a head-to-tail manner through weak cation-π interaction, undergoing a photo-induced cycloaddition quantitatively upon UV-light irradiation.展开更多
文摘频域反射法可以有效探测电缆中故障,但是传统的数据处理方法只能定位电缆中故障,而不能检测故障的阻抗状态。因此,本文提出了一种基于反射系数谱相关系数的电缆故障检测方法。首先设计对比函数,然后通过对比函数与反射系数谱构建相关系数的函数曲线,并利用该曲线中极值的位置与类型分别检测故障的位置与阻抗状态。最后对含故障的10 kV电力电缆开展仿真研究,并对含故障的60 m 10 kV电力电缆开展实验研究。仿真与实验结果表明:基于反射系数谱相关系数的电缆故障检测方法对电缆故障的定位精度较高,并且可以准确检测故障的阻抗状态。
基金supported by the National Natural Science Foundation of China (Grant Nos. 22102104, 52175550)the Natural Science Foundation of Shenzhen Science and Technology Commission (Grant Nos. RCBS20200714114920190, JCYJ20220531103409021)+2 种基金Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010672)the Specific Research Project of Guangxi for Research Bases and Talents (Grant No. 2022AC21200)the Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University (Grant No. KF20211002)。
文摘Walking on the water surface is an effective method for miniature robots to transport payloads with dramatically decreased interfacial drag. Current aquatic robots reported are generally actuated by a beam of focused light that can trigger asymmetrical deformation, enabling the directional movement through horizontal momentum transfer of photoinduced actuation force to the water. However, the operations are heavily dependent on manual manipulation of the focused light, making the long-term actuation and application of the aquatic robots in vast scenarios challenging. Herein, we developed a kind of water striderinspired robot that can autonomously manage the motion on the water surface under solar irradiation, with their direction steerable by a magnetic field. The motion of this bioinspired robot on the water surface was achieved by the use of a solar cell panel as a driving module to enable propulsive motion based on the conversion of light-electric-mechanical energies. The superhydrophobic design of its leg surfaces enables the aquatic robots with weight-bearing and drag-reducing abilities. With the assistance of magnetic navigation, the bioinspired robot can continuously and controllably locomote to the oily spill floating on the water body and collect them with high efficiency. For further demonstration, the treatment of oil spills in a campus pool with high efficiency has also been achieved. This on-site oil-spill treating strategy, taking advantage of a home-made bioinspired robot actuated by natural sunlight under magnetic steering, shows great potential applications in water-body remediation.
基金This work was supported by the National Natural Science Foundation of China(Nos.21871027 and 21573016).
文摘Aphotoactive metal-organic complex[Zn2(BCbpe)2(p-DBC)2]∙5H2O(1) has been synthesized based on an olefin-containing pyridinium compound, 1-(4-carboxybenzyl)-4-[2-(4-pyridyl)-vinyl]pyridinium chloride(HBCbpeCl), and characterized by single-crystal X-ray diffraction, IR spectroscopy, powder X-ray diffraction and thermogravimetric analysis, respectively. In the solid state, the BCbpe ligands are packed in a head-to-tail manner through weak cation-π interaction, undergoing a photo-induced cycloaddition quantitatively upon UV-light irradiation.