A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group,Xuzhou. Based on the stratum column chart in this coal mine,the...A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group,Xuzhou. Based on the stratum column chart in this coal mine,the distribu-tion of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D). The permeability parameters of the coal seam floor are described given the relationship between permeability parameters. Strain and the water-inrush-indices were calculated. The wa-ter-inrush-index was 67.2% when the working face was pushed to 100 m,showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m,showing that water-inrush is quite probable. The results show that as long-wall mining is pushed along,the failure zone is enlarged,the strain increased,and fissures developed cor-respondingly,resulting in the formation of water-inrush channels. Accompanied by the failure of the strata,the perme-ability increased exponentially. In contrast,the non-Darcy flow β factor and the acceleration coefficient decreased ex-ponentially,while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.展开更多
A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC....A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC. The slope will remain stable if the unbalanced force is counterbalanced by a reinforcement force which is produced by a suitable reinforcement method. In this paper, the stability of the slope was analyzed by using FLAC, and the unbalanced force of the slope was obtained through the FISH function in FLAC. According to the equilibrium conditions, the relationship between the reinforcement force and unbalanced force was derived and accordingly the reinforcement force was determined. The reinforcement design was adopted by using pre-stressed anchor bars on the basis of the reinforcement force. An example is used to show that the effect of slope reinforcement based on the reinforcement force is safe and economical. The method doesn't need to suppose a sliding surface to obtain the reinforcement force, and it is also clear in physical meaning. So this method realized the organic unification of the stability analysis and the slope reinforcement.展开更多
The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disast...The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo- tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.展开更多
By using the steady-state seepage method, a patent seepage device together with the MTS815.02 Rock Mechanics Test System is used to test the seepage properties of non-Darcy flow in a granular gangue with five differen...By using the steady-state seepage method, a patent seepage device together with the MTS815.02 Rock Mechanics Test System is used to test the seepage properties of non-Darcy flow in a granular gangue with five different grain sizes during the compaction. The experimental results show that the seepage properties are not only related to the stress or displacement level, but also to the grain size, the pore structure of the granular gangue, and the current porosity The permeability and the non-Darcy flow coefficient can be fitted respectively by the cubic polynomials and the power functions of the porosity, Formally, the flow in granular gangue satisfies the Forchheimer's binomial flow, but under the great axial and confining pressure and owing to the grain's crushing, the flow in granular gangues is different from that in rock-fills which are naturallv oiled un. As a result, the non-Darer flow coefficient may be negative.展开更多
We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponent...We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.展开更多
基金Projects 50225414 supported by the National Outstanding Youth Foundation50574090, 50674087 and 50490270 by the National Natural Science Foundation of China
文摘A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group,Xuzhou. Based on the stratum column chart in this coal mine,the distribu-tion of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D). The permeability parameters of the coal seam floor are described given the relationship between permeability parameters. Strain and the water-inrush-indices were calculated. The wa-ter-inrush-index was 67.2% when the working face was pushed to 100 m,showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m,showing that water-inrush is quite probable. The results show that as long-wall mining is pushed along,the failure zone is enlarged,the strain increased,and fissures developed cor-respondingly,resulting in the formation of water-inrush channels. Accompanied by the failure of the strata,the perme-ability increased exponentially. In contrast,the non-Darcy flow β factor and the acceleration coefficient decreased ex-ponentially,while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.
基金Project 50492073 supported by National Natural Science Foundation of China
文摘A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC. The slope will remain stable if the unbalanced force is counterbalanced by a reinforcement force which is produced by a suitable reinforcement method. In this paper, the stability of the slope was analyzed by using FLAC, and the unbalanced force of the slope was obtained through the FISH function in FLAC. According to the equilibrium conditions, the relationship between the reinforcement force and unbalanced force was derived and accordingly the reinforcement force was determined. The reinforcement design was adopted by using pre-stressed anchor bars on the basis of the reinforcement force. An example is used to show that the effect of slope reinforcement based on the reinforcement force is safe and economical. The method doesn't need to suppose a sliding surface to obtain the reinforcement force, and it is also clear in physical meaning. So this method realized the organic unification of the stability analysis and the slope reinforcement.
基金Projects 50490273 and 50674087 supported by the National Natural Science Foundation of ChinaBK2007029 by the Natural Science Foundation of Jiangsu Province
文摘The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo- tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.
基金Projects 50225414 and 50574090 supported by National Natural Science Fund for Distinguished Young Scholars, and 105024 supported by the Key Projectof Educational Ministry
文摘By using the steady-state seepage method, a patent seepage device together with the MTS815.02 Rock Mechanics Test System is used to test the seepage properties of non-Darcy flow in a granular gangue with five different grain sizes during the compaction. The experimental results show that the seepage properties are not only related to the stress or displacement level, but also to the grain size, the pore structure of the granular gangue, and the current porosity The permeability and the non-Darcy flow coefficient can be fitted respectively by the cubic polynomials and the power functions of the porosity, Formally, the flow in granular gangue satisfies the Forchheimer's binomial flow, but under the great axial and confining pressure and owing to the grain's crushing, the flow in granular gangues is different from that in rock-fills which are naturallv oiled un. As a result, the non-Darer flow coefficient may be negative.
基金The project supported by Liu Hui Applied Mathematics Center of Nankai University and 985 Education Development Plan of Tianjin University
文摘We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.