发泡混凝土与CO2碳酸化反应不仅可以改善混凝土性能而且可实现CO2的矿化固定达到减排的效果。本实验分别考察了CO2反应时间对未浸、水浸和电石渣饱和液浸泡后发泡混凝土试块抗压强度的影响,并采用XRD、TGA、SEM分析测试手段,分别对试块...发泡混凝土与CO2碳酸化反应不仅可以改善混凝土性能而且可实现CO2的矿化固定达到减排的效果。本实验分别考察了CO2反应时间对未浸、水浸和电石渣饱和液浸泡后发泡混凝土试块抗压强度的影响,并采用XRD、TGA、SEM分析测试手段,分别对试块的矿物组成、热失重特性和微观形貌特性进行了表征。结果表明:发泡混凝土试块的抗压强度随碳酸化反应时间延长出现先增加后降低的变化趋势;碱浸碳酸化反应4 h试块强度最高为6.5 MPa,较未碳酸化反应试块强度上升80.6%。SEM分析结果显示,发泡混凝土试块孔壁结构随碳酸化反应时间延长发生较明显变化,整体上呈现“先片状致密后粒化疏松”的转化历程,这可能是导致试块抗压强度随碳酸化时间延长出现先增加后降低现象的内在原因。TGA曲线结果表明,试块达最高抗压强度时,每吨发泡混凝土可固定37 kg CO2,在不降低试块强度前提下,每吨发泡混凝土可固定61 kg CO2。展开更多
The co-liquefaction behaviors of cotton seed(CS)and flos populi(FP)were investigated in the sub-critical water/ethanol mixed solvent using the medical stone(MS)based additives.Oil products were characterized using FTI...The co-liquefaction behaviors of cotton seed(CS)and flos populi(FP)were investigated in the sub-critical water/ethanol mixed solvent using the medical stone(MS)based additives.Oil products were characterized using FTIR,GC-MS,1HNMR,and 13CNMR techniques.The test results showed that the synergistic effect of co-liquefaction was obvious when the ratio of cotton seed and flospopuli was 1:1 without additives.The additives,such as 12-phosphotungstic acid(PW12),HZSM-5,PW12/HZSM-5 and modified medical stone(MS),PW12/MS,Ni/MS,Co/MS,Mo/MS and Co-Mo/MS,could increase the bio-oil yield;and the modified MS resulted in higher liquefied oil yield than that achieved by MS.Furthermore,additives such as Ni/MS,Mo/MS,and Co-Mo/MS also could increase the yield of aliphatic hydrocarbons in liquefied oil.The addition of Co-Mo/MS could lead to a highest liquefied oil yield of 28.8%,while the additive of PW12/HZSM-5 could result in a highest total conversion of 81.6%.Results also revealed that additives,such as PW12/MS,PW12,PW12/HZSM-5,Ni/MS,Co/MS,Mo/MS,and Co-Mo/MS,could increase the H2 production and decrease the CO2 production in gas products.展开更多
The influence of Co Mo P/medical stone and SO_4^(2-)/medical stone on sulfur behavior during the Longma coal pyrolysis was investigated in a fixed bed reactor. Moreover, the kinetics was also studied. It is found that...The influence of Co Mo P/medical stone and SO_4^(2-)/medical stone on sulfur behavior during the Longma coal pyrolysis was investigated in a fixed bed reactor. Moreover, the kinetics was also studied. It is found that adding SO_4^(2-)/medical stone was favorable to removal of volatile matter, while adding Co Mo P/medical stone could inhibit the emission of volatiles. Moreover, the results also showed that adding Co Mo P/medical stone made the total sulfur retention higher, while adding SO_4^(2-)/medical stone made the total sulfur retention lower. Adding modified medical stone was beneficial to removal of sulfate sulfur and pyritic sulfur, while it was beneficial to retaining organic sulfur in the residue. Furthermore, adding Co Mo P/medical stone and SO_4^(2-)/medical stone all could increase the emission of H_2S when the temperature was higher than 450℃. Judging from the kinetics study, it also can be known that addition of the natural minerals could result in a decrease of the pre-exponential factor and also change the apparent activation energy upon comparing the apparent activation energy and the pre-exponential factor of raw Longma coal at 435—537℃.展开更多
Coal slime has low ash content,and adding coal slime during coal gangue combustion may have influence on combustion character;and at this process,NO will emit,and lead to environmental pollution.O_(2)/CO_(2)atmosphere...Coal slime has low ash content,and adding coal slime during coal gangue combustion may have influence on combustion character;and at this process,NO will emit,and lead to environmental pollution.O_(2)/CO_(2)atmosphere is conducive to NO emission reduction.Thus combustion characteristics and NO emissions during co-combustion of coal gangue and coal slime in O_(2)/CO_(2)atmospheres were studied.The results showed the addition of coal slime increased the combustion activity of the mixed fuels in both air and O_(2)/CO_(2)atmospheres.During co-combustion,there are synergistic effects between them at the fixed carbon combustion stage,and higher blending ratio of coal slime leads to stronger synergistic effect.Furthermore,this study also showed that with the increasing of coal slime blending ratio,the emission concentration of NO increases gradually;with the increase of temperature and O_(2)concentration,the NO emission concentration also gradually increases,and higher O_(2)concentration leads to shorter time required for the complete release of NO.Besides that,the results also demonstrate that the proportion of pyrrole and nitrogen oxide in the ashes increases with the increase of combustion temperature,and pyridine and quaternary nitrogen gradually disappear,while the total nitrogen content in ash decreases with the increase of temperature.The results will contribute to a better understanding of the co-combustion process of coal gangue and coal slime in O_(2)/CO_(2)atmosphere,and provide basic data for the practical industrial application of coal gangue and slime.展开更多
文摘发泡混凝土与CO2碳酸化反应不仅可以改善混凝土性能而且可实现CO2的矿化固定达到减排的效果。本实验分别考察了CO2反应时间对未浸、水浸和电石渣饱和液浸泡后发泡混凝土试块抗压强度的影响,并采用XRD、TGA、SEM分析测试手段,分别对试块的矿物组成、热失重特性和微观形貌特性进行了表征。结果表明:发泡混凝土试块的抗压强度随碳酸化反应时间延长出现先增加后降低的变化趋势;碱浸碳酸化反应4 h试块强度最高为6.5 MPa,较未碳酸化反应试块强度上升80.6%。SEM分析结果显示,发泡混凝土试块孔壁结构随碳酸化反应时间延长发生较明显变化,整体上呈现“先片状致密后粒化疏松”的转化历程,这可能是导致试块抗压强度随碳酸化时间延长出现先增加后降低现象的内在原因。TGA曲线结果表明,试块达最高抗压强度时,每吨发泡混凝土可固定37 kg CO2,在不降低试块强度前提下,每吨发泡混凝土可固定61 kg CO2。
基金This work was supported by the NSFCShanxi coal based low carbon joint fund(U1810209)the Natural Science Foundation of Shanxi Province(201901D111006).
文摘The co-liquefaction behaviors of cotton seed(CS)and flos populi(FP)were investigated in the sub-critical water/ethanol mixed solvent using the medical stone(MS)based additives.Oil products were characterized using FTIR,GC-MS,1HNMR,and 13CNMR techniques.The test results showed that the synergistic effect of co-liquefaction was obvious when the ratio of cotton seed and flospopuli was 1:1 without additives.The additives,such as 12-phosphotungstic acid(PW12),HZSM-5,PW12/HZSM-5 and modified medical stone(MS),PW12/MS,Ni/MS,Co/MS,Mo/MS and Co-Mo/MS,could increase the bio-oil yield;and the modified MS resulted in higher liquefied oil yield than that achieved by MS.Furthermore,additives such as Ni/MS,Mo/MS,and Co-Mo/MS also could increase the yield of aliphatic hydrocarbons in liquefied oil.The addition of Co-Mo/MS could lead to a highest liquefied oil yield of 28.8%,while the additive of PW12/HZSM-5 could result in a highest total conversion of 81.6%.Results also revealed that additives,such as PW12/MS,PW12,PW12/HZSM-5,Ni/MS,Co/MS,Mo/MS,and Co-Mo/MS,could increase the H2 production and decrease the CO2 production in gas products.
基金Upon undertaking the Key Research and Development Program (International Cooperation) of Shanxi (Project Number: 201603D421041)the financial supports of this work by the Provincial Key Scientific Research Projects on Coal-based Low Carbon Energy of Shanxi Province (Project Number: MD2015-01)+1 种基金the National Natural Science Foundation of China-Shanxi Coal-based Low Carbon Joint Fund (U1610254)the NSFC-National Natural Science Foundation of China (No. 51476109)are gratefully acknowledged
文摘The influence of Co Mo P/medical stone and SO_4^(2-)/medical stone on sulfur behavior during the Longma coal pyrolysis was investigated in a fixed bed reactor. Moreover, the kinetics was also studied. It is found that adding SO_4^(2-)/medical stone was favorable to removal of volatile matter, while adding Co Mo P/medical stone could inhibit the emission of volatiles. Moreover, the results also showed that adding Co Mo P/medical stone made the total sulfur retention higher, while adding SO_4^(2-)/medical stone made the total sulfur retention lower. Adding modified medical stone was beneficial to removal of sulfate sulfur and pyritic sulfur, while it was beneficial to retaining organic sulfur in the residue. Furthermore, adding Co Mo P/medical stone and SO_4^(2-)/medical stone all could increase the emission of H_2S when the temperature was higher than 450℃. Judging from the kinetics study, it also can be known that addition of the natural minerals could result in a decrease of the pre-exponential factor and also change the apparent activation energy upon comparing the apparent activation energy and the pre-exponential factor of raw Longma coal at 435—537℃.
基金financially supported by National Natural Science Foundation of China-Shanxi coal based low carbon joint fund(U1610254)Natural Science Foundation of Shanxi Province(201901D111006)。
文摘Coal slime has low ash content,and adding coal slime during coal gangue combustion may have influence on combustion character;and at this process,NO will emit,and lead to environmental pollution.O_(2)/CO_(2)atmosphere is conducive to NO emission reduction.Thus combustion characteristics and NO emissions during co-combustion of coal gangue and coal slime in O_(2)/CO_(2)atmospheres were studied.The results showed the addition of coal slime increased the combustion activity of the mixed fuels in both air and O_(2)/CO_(2)atmospheres.During co-combustion,there are synergistic effects between them at the fixed carbon combustion stage,and higher blending ratio of coal slime leads to stronger synergistic effect.Furthermore,this study also showed that with the increasing of coal slime blending ratio,the emission concentration of NO increases gradually;with the increase of temperature and O_(2)concentration,the NO emission concentration also gradually increases,and higher O_(2)concentration leads to shorter time required for the complete release of NO.Besides that,the results also demonstrate that the proportion of pyrrole and nitrogen oxide in the ashes increases with the increase of combustion temperature,and pyridine and quaternary nitrogen gradually disappear,while the total nitrogen content in ash decreases with the increase of temperature.The results will contribute to a better understanding of the co-combustion process of coal gangue and coal slime in O_(2)/CO_(2)atmosphere,and provide basic data for the practical industrial application of coal gangue and slime.