期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modelling the Effects of Land-use Change on Runoff and Sediment Yield in the Weicheng River Watershed, Southwest China 被引量:3
1
作者 ZHANG Xiao-ke FAN Ji-hui cheng gen-wei 《Journal of Mountain Science》 SCIE CSCD 2015年第2期434-445,共12页
As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil cons... As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield. 展开更多
关键词 Land-use change Hydrological modelling Reforestation scenario Runoff and sediment yield
下载PDF
Rebirth after death: forest succession dynamics in response to climate change on Gongga Mountain, Southwest China 被引量:4
2
作者 cheng gen-wei LU Xu-yang +1 位作者 WANG Xiao-dan SUN Jian 《Journal of Mountain Science》 SCIE CSCD 2018年第8期1671-1681,共11页
Global climate change is having long-term impacts on the geographic distribution of forest species. However, the response of vertical belts of mountain forests to climate change is still little known. The vertical dis... Global climate change is having long-term impacts on the geographic distribution of forest species. However, the response of vertical belts of mountain forests to climate change is still little known. The vertical distribution of forest vegetation(vertical vegetation belt) on Gongga Mountain in Southwest China has been monitored for 30 years. The forest alternation of the vertical vegetation belt under different climate conditions was simulated by using a mathematical model GFSM(the Gongga Forest Succession Model). Three possible Intergovernmental Panel on Climate Change(IPCC) climate scenarios(increase of air temperature and precipitation by 1.8℃/5%, 2.8℃/10% and 3.4℃/15% for B_1, A_1B and A_2 scenarios, respectively) were chosen to reflect lower, medium and higher changes of global climate. The vertical belts of mountainous vegetation will shift upward by approximately 300 m, 500 m and 600 m in the B_1, A_1B and A_2 scenarios, respectively, according to the simulated results. Thus, the alpine tree-line will move to a higher altitude. The simulation also demonstrated that, in a changing climate, the shift in the vegetation community will be a slow and extended process characterized by two main phases. During the initial phase, trees of the forest community degrade or die, owing to an inability to adapt to a warmer climate. This results in modest environment for the introduction of opportunistic species, consequently, the vegetation with new dominant tree species becomes predominant in the space vacated by the dead trees at the expense of previously dominated original trees as the succession succeed and climate change advance. Hence, the global climate change would dramatically change forest communities and tree species in mountainous regions because that the new forest community can grow only through the death of the original tree. Results indicated that climate change will cause the change of distribution and composition of forest communities on Gongga Mountain, and this change may enhance as the intensity of climate change increases. As a result, the alternation of death and rebirth would finally result in intensive landscape changes, and may strongly affect the eco-environment of mountainous regions. 展开更多
关键词 Climate change Forest Succession Model Forest vegetation Vertical vegetation belt Forest succession Gongga Mountain
下载PDF
The Altitudinal Belts of Subalpine Virgin Forest on Mt.Gongga Simulated by a Succession Model 被引量:3
3
作者 cheng gen-wei SUN Jian +1 位作者 SHA Yu-kun FAN Ji-hui 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1560-1570,共11页
How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of f... How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of forest succession and revealing the species structure of vegetation.In the present study,the GFSM(Gongga Forest Succession Model) was developed and applied to simulate the distribution,composition and succession process of forests in 100 m elevation intervals.The results indicate that the simulated results of the tree species,quantities of the different types of trees,tree age and differences in DBH(diameter at breast height) composition were in line with the actual situation from 1400 to 3700 MASL(meters above sea level) on the eastern slope of Mt.Gongga.Moreover,the dominant species in the simulated results were the same as those in the surveyed database.Thus,the GFSM model can best simulate the features of forest dynamics and structure in the natural conditions of Mt.Gongga.The work provides a new approach to studying the structure and distribution characteristics of mountain ecosystems in varied elevations.Moreover,the results of this study suggest that the biogeochemistry mechanism model should be combined with the forestsuccession model to facilitate the ecological model in simulating the physical and chemical processes involved. 展开更多
关键词 Subalpine forests Altitudinal belts Succession processes Forest gap model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部