The kinetic curve of the high-temperature oxidation of austenitie stainless steel Crl8Ni11 Cu3Al3MnNb at different temperatures was measured by weighting method. It is showed that the oxidation curves at 700 and 800 ...The kinetic curve of the high-temperature oxidation of austenitie stainless steel Crl8Ni11 Cu3Al3MnNb at different temperatures was measured by weighting method. It is showed that the oxidation curves at 700 and 800 ℃ followed the parabolic law, and the steel presented an excellent anti-oxidation. The surface morphology and structure of the oxide film were studied by scanning electron microscopy and X-ray diffraction methods. A dense oxide film was attained at 700 and 800 ℃, mainly composed of the hexagonal Al2 O3, Fe2 O3, and a small amount oxide of Cr at 700 ℃. At 900 ℃ the oxide film started to delaminate, and was composed of (Cr,Fe)2O3 and the spinel CuCrMnO4 and Fe(Cr, Al) 2O3.展开更多
基金Item Sponsored by Special Fund of Jiangsu Province of China for Transformation of Scientific and Technological Achievements (BA2010053)
文摘The kinetic curve of the high-temperature oxidation of austenitie stainless steel Crl8Ni11 Cu3Al3MnNb at different temperatures was measured by weighting method. It is showed that the oxidation curves at 700 and 800 ℃ followed the parabolic law, and the steel presented an excellent anti-oxidation. The surface morphology and structure of the oxide film were studied by scanning electron microscopy and X-ray diffraction methods. A dense oxide film was attained at 700 and 800 ℃, mainly composed of the hexagonal Al2 O3, Fe2 O3, and a small amount oxide of Cr at 700 ℃. At 900 ℃ the oxide film started to delaminate, and was composed of (Cr,Fe)2O3 and the spinel CuCrMnO4 and Fe(Cr, Al) 2O3.