According to the characteristics of gear fault vibration signals, a methodfor gear fault diagnosis based upon the empirical mode decomposition (EMD) is proposed in thispaper. By using EMD, any complicated signal can b...According to the characteristics of gear fault vibration signals, a methodfor gear fault diagnosis based upon the empirical mode decomposition (EMD) is proposed in thispaper. By using EMD, any complicated signal can be decomposed into a finite and often small numberof intrinsic mode functions (IMFs) , which are based upon the local characteristic time scale of thesignal. Thus, EMD is perfectly suitable for non-stationary signal processing and faultcharacteristics extracting. It is well known that a gear vibration signal consists of a number offrequency family components, each of which is a modulated signal. Thus, we can use EMD to decomposea gear fault vibration signal into a number of IMF components, some of which correspond to thefrequency families, and the others are noises. Therefore, the frequency families can be separatedand the noise can be decreased at the same time. The proposed method has been applied to gear faultdiagnosis. The results show that both the sensitivity and the reliability of this method aresatisfactory.展开更多
文摘According to the characteristics of gear fault vibration signals, a methodfor gear fault diagnosis based upon the empirical mode decomposition (EMD) is proposed in thispaper. By using EMD, any complicated signal can be decomposed into a finite and often small numberof intrinsic mode functions (IMFs) , which are based upon the local characteristic time scale of thesignal. Thus, EMD is perfectly suitable for non-stationary signal processing and faultcharacteristics extracting. It is well known that a gear vibration signal consists of a number offrequency family components, each of which is a modulated signal. Thus, we can use EMD to decomposea gear fault vibration signal into a number of IMF components, some of which correspond to thefrequency families, and the others are noises. Therefore, the frequency families can be separatedand the noise can be decreased at the same time. The proposed method has been applied to gear faultdiagnosis. The results show that both the sensitivity and the reliability of this method aresatisfactory.