The cold neutron source (CNS) is a facility to increase cold neutrons by scattering thermal neutrons in liquid hydrogen or deuterium around 20 K. For extracting a stable cold neutron flux from the CNS, the liquid quan...The cold neutron source (CNS) is a facility to increase cold neutrons by scattering thermal neutrons in liquid hydrogen or deuterium around 20 K. For extracting a stable cold neutron flux from the CNS, the liquid quantity in the moderator cell should be maintained stably against disturbance of nuclear heating. The China Institute of Atomic Energy (CIAE) is now constructing the China Advanced Research Reactor (CARR: 60 MW), and designing the CARR-CNS with a two-phase thermo-siphon loop consisting of a condenser, two moderator transfer tubes and an annular cylindrical moderator cell. The mock-up tests were carried out using a full-scale loop with Freon-113, for validating the self-regulating characteristics of the loop, the void fraction less than 20% in the liquid hydrogen of the moderator cell, and the requirements for establishing the condition under which the inner shell has only vapor. The density ratio of liquid to vapor and the volumetric evaporation rate due to heat load are kept the same as those in normal operation of the CARR-CNS. The results show that the loop has the self-regulating characteristics and the in- ner shell contains only vapor, while the outer shell liquid. The local void fraction in the liquid increases with increas- ing of the loop pressure.展开更多
To keep the void fraction of two-phase hydrogen in the moderator cell of the cold neutron source (CNS)of China Advanced Research Reactor (CARR) to a specified range, an annular vessel with the same size as the actual ...To keep the void fraction of two-phase hydrogen in the moderator cell of the cold neutron source (CNS)of China Advanced Research Reactor (CARR) to a specified range, an annular vessel with the same size as the actual moderator cell was used as test section. Deionized water and alcohol, sucrose, and sodium chloride solutions with different concentrations were used as working fluid to find out influences of physical properties, such as density, viscosity and surface tension, of the two-phase mixture on void fraction. The tests proved that the ratio of surface tension to density of liquid phase has great influence on void fraction: the larger the ratio, the smaller the void fraction.Since the ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen, Freon 113 can be used as a working fluid to study the void fraction in the two-phase hydrogen thermosiphon loop in the CNS of CARR and the results will be conservative.展开更多
基金Supported by the National Natural Science Foundation of China (No.10375046) and The China Institute of Atomic Energy
文摘The cold neutron source (CNS) is a facility to increase cold neutrons by scattering thermal neutrons in liquid hydrogen or deuterium around 20 K. For extracting a stable cold neutron flux from the CNS, the liquid quantity in the moderator cell should be maintained stably against disturbance of nuclear heating. The China Institute of Atomic Energy (CIAE) is now constructing the China Advanced Research Reactor (CARR: 60 MW), and designing the CARR-CNS with a two-phase thermo-siphon loop consisting of a condenser, two moderator transfer tubes and an annular cylindrical moderator cell. The mock-up tests were carried out using a full-scale loop with Freon-113, for validating the self-regulating characteristics of the loop, the void fraction less than 20% in the liquid hydrogen of the moderator cell, and the requirements for establishing the condition under which the inner shell has only vapor. The density ratio of liquid to vapor and the volumetric evaporation rate due to heat load are kept the same as those in normal operation of the CARR-CNS. The results show that the loop has the self-regulating characteristics and the in- ner shell contains only vapor, while the outer shell liquid. The local void fraction in the liquid increases with increas- ing of the loop pressure.
基金Supported by the National Science Foundation of China(Grant No.1 0375046)
文摘To keep the void fraction of two-phase hydrogen in the moderator cell of the cold neutron source (CNS)of China Advanced Research Reactor (CARR) to a specified range, an annular vessel with the same size as the actual moderator cell was used as test section. Deionized water and alcohol, sucrose, and sodium chloride solutions with different concentrations were used as working fluid to find out influences of physical properties, such as density, viscosity and surface tension, of the two-phase mixture on void fraction. The tests proved that the ratio of surface tension to density of liquid phase has great influence on void fraction: the larger the ratio, the smaller the void fraction.Since the ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen, Freon 113 can be used as a working fluid to study the void fraction in the two-phase hydrogen thermosiphon loop in the CNS of CARR and the results will be conservative.