期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Facet Reflection Coefficient of Phase-lockedDiode Laser Array in an External Cavity
1
作者 YANDi-yong chenjian-guo +2 位作者 TANGChun FENGGuo-ying LIDa-yi 《Semiconductor Photonics and Technology》 CAS 2003年第2期71-74,共4页
A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C 1) and that of itself (S) after being reflected at the DLA facet as well as from the externa... A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C 1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C 0). Considering the fact that|C 0/S| should be larger than unity if the external cavity is effective,and|C 1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror. 展开更多
关键词 diode laser array external cavity phase locking
下载PDF
The ectopic study of tissue-engineered bone with hBMP-4 gene modified bone marrow stromal cells in rabbits 被引量:11
2
作者 JIANGXin-quan chenjian-guo +3 位作者 SébastienGittens CHENChuan-jun ZHANGXiu-li ZHANGZhi-yuan 《Chinese Medical Journal》 SCIE CAS CSCD 2005年第4期281-288,共8页
Background Tissue-engineering techniques combined with gene therapy have beenrecently reported to improve osteogenesis. In this study, tissue-engineered bone constructed byhuman Bone Morphogenetic Protein 4 (hBMP-4) g... Background Tissue-engineering techniques combined with gene therapy have beenrecently reported to improve osteogenesis. In this study, tissue-engineered bone constructed byhuman Bone Morphogenetic Protein 4 (hBMP-4) gene-modified bone marrow stromal cells (bMSCs) wasexplored in an ectopic bone formation model in rabbits. Methods A pEGFP-hBMP-4 mammalian plasmid (EGFP: Enhanced Green Fluorescent Protein) was constructed by subcloning techniques. bMSCs obtainedfrom rabbits were cultured and transfected with either pEGFP-hBMP-4, pEGFP or left uninfected invitro. Transfer efficiency was detected through the expression of EGFP. Transcription of the targetgene was detected by RT-PCR. Alkaline phosphatase (ALP) and Von Kossa tests were also conducted toexplore the phenotypes of osteoblasts. The autologous bMSCs of the 3 groups were then combined withNatural Non-organic Bone ( NNB) , a porous hydroxyapatite implant with a dimension of 6 mm x 6 mm x3 mm, at a concentration of 5 x 10~7 cells/ml. They were subsequently implanted into 6 rabbitssubcutaneously using NNB alone as a blank control (6 implants per group). Four weeks after surgery,the implants were evaluated with histological staining and computerized analysis of new boneformation. Results pEGFP-hBMP-4 expression plasmid was constructed. Under optimal conditions, genetransfer efficiency reached more than 30% , Target gene transfer could strengthen the transcriptionof BMP-4, and increase the expression of ALP as well as the number of calcium nodules. In theectopic animal model, NNB alone could not induce new bone formation. The new bone area formed in thebMSCs group was (17.2 ± 7.1)%, and pEGFP group was (14.7 ± 6.1) % , while pEGFP-hBMP-4 group was(29.5 ± 8.2) % , which was the highest among the groups (F = 7.295, P < 0. 01). Conclusions Themammalian hBMP-4 expression plasmid was successfully constructed and a comparatively high transferefficiency was achieved. The gene transfer technique enhanced the expression of BMP-4 and promoteddifferentiation from bMSCs to osteoblasts. These in vivo results suggested that transfection ofbMSCs with hBMP-4 might be a suitable method to enhance their inherent osteogenic capacity for bonetissue engineering applications. 展开更多
关键词 tissue engineering bone morphogenetic protein bone marrow stromal cells gene therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部