The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms o...The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms or Sommerfeld-type integrals are used to recover all components of the dyadic Green's function in real space. The Hankel transforms are performed with the adaptive generalized Gaussian quadrature points and window functions to minimize the computational cost. Subsequently, a fast integral equation solver with O(N2zNxNy log(NzNy)) in layered media is developed by rewriting the layered media integral operator in terms of Hankel transforms and using the new fast multipole method for the n-th order Bessel function in 2-D. Computational cost and parallel efficiency of the new algorithm are presented.展开更多
基金supported by the US Army Ofce of Research(Grant No.W911NF11-1-0364)the National Science Foundation of USA(Grant No.DMS-1005441)National Natural Science Foundation of China(Grant No.91230105)
文摘The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms or Sommerfeld-type integrals are used to recover all components of the dyadic Green's function in real space. The Hankel transforms are performed with the adaptive generalized Gaussian quadrature points and window functions to minimize the computational cost. Subsequently, a fast integral equation solver with O(N2zNxNy log(NzNy)) in layered media is developed by rewriting the layered media integral operator in terms of Hankel transforms and using the new fast multipole method for the n-th order Bessel function in 2-D. Computational cost and parallel efficiency of the new algorithm are presented.