Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydropho...Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications.展开更多
基金Project(52075302)supported by the National Natural Science Foundation of ChinaProject(ZR2021QE247)supported by the Shandong Provincial Natural Science Foundation,China+2 种基金Projects(ZR2018ZB0521,ZR2018ZA0401)supported by the Major Basic Research of Shandong Provincial Natural Science Foundation,ChinaProject(Kfkt2020-09)supported by the Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(52075302)supported by the Key Laboratory of High-efficiency and Clean Mechanical Manufacture(Shandong University),Ministry of Education,China。
文摘Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications.