The interaction of particles with a solid-liquid interface during solidification of metal matrix composites has been investigated theoretically in this paper.Owing to the presence of particles in the melt,the shape of...The interaction of particles with a solid-liquid interface during solidification of metal matrix composites has been investigated theoretically in this paper.Owing to the presence of particles in the melt,the shape of the solidification front and solute concentration field in front of solidification interface have been disturbed The thermodynamic method was employed,and a mathematical expression of the shape of the solidification interface and solute concentration field were deduced.Meanwhile,a theory is developed for evaluation of critical velocities of particles pushed by the solidification interface.A numerical simulation is done in which the critical velocity is evaluated as a function of particle size,thermal conductivity,diffusion coefficient,temperature gradient at the solidification front,the solid-liquid interfacial energy and the melt viscosity.The critical velocity is shown to be closely linked to the shape of the solidification interface and solute concentration field, and hence all the parameters also affect the shape of the solidification interface and solute concentration field of the front.展开更多
This paper explains the principle of a newly developed ZMLMC directional solidification apparatus with a superhigh temperature gradient.With the help of the apparatus,research was done on the change of directional sol...This paper explains the principle of a newly developed ZMLMC directional solidification apparatus with a superhigh temperature gradient.With the help of the apparatus,research was done on the change of directional solidification structures of the cobalt based superalloy K10 at superhigh velocities.Relations between the primary and secondary dendrite arm spacings and the cooling rates Were investigated.Experimental results show that the primary and secondary dendrite arm spacings of directionally solidified cobalt based superalloys are respectively finer than one fifth and one eighth of those produced by conventional directional soli-dification processes.The primary and secondary dendrite arm spacing which can be decreased by increasing the cooling rate,and the relations between these spacings(λ1,λ2)and the temperature gradient(G)and solidfication rate(v)were as follows:λ1=1.428×10^(3)(G·v)^-1_(1)λ_(2)=0.132×10^(3)(G·v)^-1.展开更多
文摘The interaction of particles with a solid-liquid interface during solidification of metal matrix composites has been investigated theoretically in this paper.Owing to the presence of particles in the melt,the shape of the solidification front and solute concentration field in front of solidification interface have been disturbed The thermodynamic method was employed,and a mathematical expression of the shape of the solidification interface and solute concentration field were deduced.Meanwhile,a theory is developed for evaluation of critical velocities of particles pushed by the solidification interface.A numerical simulation is done in which the critical velocity is evaluated as a function of particle size,thermal conductivity,diffusion coefficient,temperature gradient at the solidification front,the solid-liquid interfacial energy and the melt viscosity.The critical velocity is shown to be closely linked to the shape of the solidification interface and solute concentration field, and hence all the parameters also affect the shape of the solidification interface and solute concentration field of the front.
基金supported by China National Natural Science foundation。
文摘This paper explains the principle of a newly developed ZMLMC directional solidification apparatus with a superhigh temperature gradient.With the help of the apparatus,research was done on the change of directional solidification structures of the cobalt based superalloy K10 at superhigh velocities.Relations between the primary and secondary dendrite arm spacings and the cooling rates Were investigated.Experimental results show that the primary and secondary dendrite arm spacings of directionally solidified cobalt based superalloys are respectively finer than one fifth and one eighth of those produced by conventional directional soli-dification processes.The primary and secondary dendrite arm spacing which can be decreased by increasing the cooling rate,and the relations between these spacings(λ1,λ2)and the temperature gradient(G)and solidfication rate(v)were as follows:λ1=1.428×10^(3)(G·v)^-1_(1)λ_(2)=0.132×10^(3)(G·v)^-1.