To explore the way to induce mesenchymal stem cells (MSCs) to differentiate into dopaminergic neurons in vitro. Methods MSCs were obtained from rat bone marrow, cultured and passaged. MSCs used in this experi...To explore the way to induce mesenchymal stem cells (MSCs) to differentiate into dopaminergic neurons in vitro. Methods MSCs were obtained from rat bone marrow, cultured and passaged. MSCs used in this experiment had multipotency, which was indirectly proved by being induced to differentiate into chondrocytes and adipocytes. MSCs were cultured in medium containing 0.5 mmol/L IBMX for 2 days. Then the medium was replaced with induction medium, which contained GDNF, IL-1β, mesencephalic glial-cell-conditioned medium and flash-frozen mesencephalic membrane fragments. The surface markers of the differentiated neurons, such as NSE, nestin, MAP-2a, b and TH were detected by immunocytochemistry and Western blot after MSCs were cultured in induction medium for 7 days and 15 days. Results MSCs differentiated into neural progenitors and expressed nestin after MSCs were incubated with medium containing IBMX for 2 d. After the medium was replaced with induction medium containing many inducing agents, MSCs differentiated into neuron-like cells and dopaminergic neuron-like cells and expressed NSE, MAP-2a, b and TH. The percentage of NSE-positive cells, MAP-2a, b-positive cells and TH-positive cells was 30.032±2.489%, 41.580±5.101% and 34.958±5.534%, respectively after MSCs were induced in medium containing GDNF, IL-1β, mesencephalic glial-cell-conditioned medium and flash-frozen mesencephalic membrane fragments for 15 days. Conclusion MSCs can differentiate into dopaminergic neuron-like cells and are a new cell source for the treatment of neurodegeneration diseases and have a great potential for wide application展开更多
Inherent heterogeneity and distribution of knowledge strongly prevent knowledge from sharing and reusing among different agents and software entities, and a formal ontology has been viewed as a promising means to tack...Inherent heterogeneity and distribution of knowledge strongly prevent knowledge from sharing and reusing among different agents and software entities, and a formal ontology has been viewed as a promising means to tackle this problem. In this paper, a domain-specific formal ontology of archaeology is presented. The ontology mainly consists of three parts: archaeological categories, their relationships and axioms. The ontology not only captures the semantics of archaeological knowledge, but also provides archaeology with an explicit and formal specification of a shared conceptualization, thus making archaeological knowledge shareable and reusable across humans and machines in a structured fashion. Further, we propose a method to verify ontology. correctness based on the individuals of categories. As applications of the ontology,we have developed an ontology-driven approach to knowledge acquisition from archaeological text and a question answering system for archaeological knowledge.展开更多
基金This work was supported by a grant from the National Natural Science Foundation of China (No.39970741) a grant from the the Scienceand Technology Foundation of Jilin Health Administration (No. 200131) and a grant from the Youth Teacher Foundation o
文摘To explore the way to induce mesenchymal stem cells (MSCs) to differentiate into dopaminergic neurons in vitro. Methods MSCs were obtained from rat bone marrow, cultured and passaged. MSCs used in this experiment had multipotency, which was indirectly proved by being induced to differentiate into chondrocytes and adipocytes. MSCs were cultured in medium containing 0.5 mmol/L IBMX for 2 days. Then the medium was replaced with induction medium, which contained GDNF, IL-1β, mesencephalic glial-cell-conditioned medium and flash-frozen mesencephalic membrane fragments. The surface markers of the differentiated neurons, such as NSE, nestin, MAP-2a, b and TH were detected by immunocytochemistry and Western blot after MSCs were cultured in induction medium for 7 days and 15 days. Results MSCs differentiated into neural progenitors and expressed nestin after MSCs were incubated with medium containing IBMX for 2 d. After the medium was replaced with induction medium containing many inducing agents, MSCs differentiated into neuron-like cells and dopaminergic neuron-like cells and expressed NSE, MAP-2a, b and TH. The percentage of NSE-positive cells, MAP-2a, b-positive cells and TH-positive cells was 30.032±2.489%, 41.580±5.101% and 34.958±5.534%, respectively after MSCs were induced in medium containing GDNF, IL-1β, mesencephalic glial-cell-conditioned medium and flash-frozen mesencephalic membrane fragments for 15 days. Conclusion MSCs can differentiate into dopaminergic neuron-like cells and are a new cell source for the treatment of neurodegeneration diseases and have a great potential for wide application
文摘Inherent heterogeneity and distribution of knowledge strongly prevent knowledge from sharing and reusing among different agents and software entities, and a formal ontology has been viewed as a promising means to tackle this problem. In this paper, a domain-specific formal ontology of archaeology is presented. The ontology mainly consists of three parts: archaeological categories, their relationships and axioms. The ontology not only captures the semantics of archaeological knowledge, but also provides archaeology with an explicit and formal specification of a shared conceptualization, thus making archaeological knowledge shareable and reusable across humans and machines in a structured fashion. Further, we propose a method to verify ontology. correctness based on the individuals of categories. As applications of the ontology,we have developed an ontology-driven approach to knowledge acquisition from archaeological text and a question answering system for archaeological knowledge.