Cucurbit[n]urils (Q[n]) are promising ligands for the coordination of metal ions, metal complexes or clusters, and form various Q[n]-based complexes. Among the Q[n] complexes, those formed by direct coordination betwe...Cucurbit[n]urils (Q[n]) are promising ligands for the coordination of metal ions, metal complexes or clusters, and form various Q[n]-based complexes. Among the Q[n] complexes, those formed by direct coordination between Q[n]s and metal ions are particularly important. The direct coordination of metal ions to cucurbit[n]urils leads to the formation of Q[n]-based molecular capsules, tubular polymers and molecular bracelets, which could have nanoscale applications in drug delivery, molecular devices and new materials.展开更多
基金supported by the National Natural Science Foundation of China (20961002 and 20767001)The "Chun-Hui" Funds of the Chinese Ministry of Education+1 种基金the Science and Technology Fund of Guizhou Provincethe International Collaborative Project Fund of Guizhou Province
文摘Cucurbit[n]urils (Q[n]) are promising ligands for the coordination of metal ions, metal complexes or clusters, and form various Q[n]-based complexes. Among the Q[n] complexes, those formed by direct coordination between Q[n]s and metal ions are particularly important. The direct coordination of metal ions to cucurbit[n]urils leads to the formation of Q[n]-based molecular capsules, tubular polymers and molecular bracelets, which could have nanoscale applications in drug delivery, molecular devices and new materials.