Let {X,Xn,n1} be a sequence of independent identically distributed random variables with EX=0 and assume that EX2I(|X|≤x) is slowly varying as x→∞,i.e.,X is in the domain of attraction of the normal law.In this pap...Let {X,Xn,n1} be a sequence of independent identically distributed random variables with EX=0 and assume that EX2I(|X|≤x) is slowly varying as x→∞,i.e.,X is in the domain of attraction of the normal law.In this paper a Strassen-type strong approximation is established for self-normalized sums of such random variables.展开更多
基金supported by an NSERC Canada Discovery Grant of M.Csrgo at Carleton UniversityNational Natural Science Foundation of China(Grant No.10801122)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.200803581009)the Fundamental Research Funds for the Central Universities
文摘Let {X,Xn,n1} be a sequence of independent identically distributed random variables with EX=0 and assume that EX2I(|X|≤x) is slowly varying as x→∞,i.e.,X is in the domain of attraction of the normal law.In this paper a Strassen-type strong approximation is established for self-normalized sums of such random variables.