We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise. It is shown that ...We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise. It is shown that due to environment noise, all quantum entangled states are very fragile and become a classical mixed state in a short-time limit. But the environment can affect entanglement in very different ways. The type of decoherence process for certain entangled states belongs to amplitude damping, while the others belong to dephasing decoherenee.展开更多
Two charge qubits being coupled to a damped cavity with different couplings are considered. The dynamical evolution of the entanglement between the two qubits is demonstrated analytically or numerically. It is found t...Two charge qubits being coupled to a damped cavity with different couplings are considered. The dynamical evolution of the entanglement between the two qubits is demonstrated analytically or numerically. It is found that with the cavity dissipation, the steady entanglement between the two qubits can be achieved. The two qubits being initially in the separable and most mixed state can be easily induced to a steady entangled state, and the relative difference of the couplings can be used to enhance the steady entanglement between the two charge qubits.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 10374007
文摘We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise. It is shown that due to environment noise, all quantum entangled states are very fragile and become a classical mixed state in a short-time limit. But the environment can affect entanglement in very different ways. The type of decoherence process for certain entangled states belongs to amplitude damping, while the others belong to dephasing decoherenee.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374007
文摘Two charge qubits being coupled to a damped cavity with different couplings are considered. The dynamical evolution of the entanglement between the two qubits is demonstrated analytically or numerically. It is found that with the cavity dissipation, the steady entanglement between the two qubits can be achieved. The two qubits being initially in the separable and most mixed state can be easily induced to a steady entangled state, and the relative difference of the couplings can be used to enhance the steady entanglement between the two charge qubits.