This letter proposes fingerprint-based key binding/recovering with fuzzy vault. Fingerprint minutiae data and the cryptographic key are merged together by a multivariable linear function. First, the minutiae data are ...This letter proposes fingerprint-based key binding/recovering with fuzzy vault. Fingerprint minutiae data and the cryptographic key are merged together by a multivariable linear function. First, the minutiae data are bound by a set of random data through the linear function. The number of the function’s variables is determined by the required number of matched minutiae. Then, a new key de- rived from the random data is used to encrypt the cryptographic key. Lastly, the binding data are protected using fuzzy vault scheme. The proposed scheme provides the system with the flexibility to use changeable number of minutiae to bind/recover the protected key and a unified method regardless of the length of the key.展开更多
To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random line...To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random linear network codes (IHRLNC), which not only take the flexibility of intersession network coding for layer mixing but also consider the strict priority inherent in the layered source data. Furthermore, we propose the inter-layer hierarchical multicast (IHM), which performs IHRLNC in the network such that each sink can recover some source layers according to its individu- al capacity. To determine the optimal type of IHRLNC that should be performed on each edge in IHM, we formulate an optimization problem based on 0-1 integer linear programming, and propose a heuristic approach to approximate the optimal solution in polynomial time. Simulation results show that the proposed IHM can achieve throughput gains over the layered muhicast schemes.展开更多
We propose a novel progressive framework to optimize deep neural networks. The idea is to try to combine the stability of linear methods and the ability of learning complex and abstract internal representations of dee...We propose a novel progressive framework to optimize deep neural networks. The idea is to try to combine the stability of linear methods and the ability of learning complex and abstract internal representations of deep leaming methods. We insert a linear loss layer between the input layer and the first hidden non-linear layer of a traditional deep model. The loss objective for optimization is a weighted sum of linear loss of the added new layer and non-linear loss of the last output layer. We modify the model structure of deep canonical correlation analysis (DCCA), i.e., adding a third semantic view to regularize text and image pairs and embedding the structure into our framework, for cross-modal retrieval tasks such as text-to-image search and image-to-text search. The experimental results show the performance of the modified model is better than similar state-of-art approaches on a dataset of National University of Singapore (NUS-WIDE). To validate the generalization ability of our framework, we apply our framework to RankNet, a ranking model optimized by stochastic gradient descent. Our method outperforms RankNet and converges more quickly, which indicates our progressive framework could provide a better and faster solution for deep neural networks.展开更多
基金Supported by the National Natural Science Foundation of China (No.60472069)
文摘This letter proposes fingerprint-based key binding/recovering with fuzzy vault. Fingerprint minutiae data and the cryptographic key are merged together by a multivariable linear function. First, the minutiae data are bound by a set of random data through the linear function. The number of the function’s variables is determined by the required number of matched minutiae. Then, a new key de- rived from the random data is used to encrypt the cryptographic key. Lastly, the binding data are protected using fuzzy vault scheme. The proposed scheme provides the system with the flexibility to use changeable number of minutiae to bind/recover the protected key and a unified method regardless of the length of the key.
基金Supported by the National Natural Science Foundation of China ( No. 60832001 ).
文摘To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random linear network codes (IHRLNC), which not only take the flexibility of intersession network coding for layer mixing but also consider the strict priority inherent in the layered source data. Furthermore, we propose the inter-layer hierarchical multicast (IHM), which performs IHRLNC in the network such that each sink can recover some source layers according to its individu- al capacity. To determine the optimal type of IHRLNC that should be performed on each edge in IHM, we formulate an optimization problem based on 0-1 integer linear programming, and propose a heuristic approach to approximate the optimal solution in polynomial time. Simulation results show that the proposed IHM can achieve throughput gains over the layered muhicast schemes.
基金supported by the National Natural Science Foundation of China (61471049, 61372169, 61532018)the Postgraduate Innovation Fund of SICE, BUPT, 2015
文摘We propose a novel progressive framework to optimize deep neural networks. The idea is to try to combine the stability of linear methods and the ability of learning complex and abstract internal representations of deep leaming methods. We insert a linear loss layer between the input layer and the first hidden non-linear layer of a traditional deep model. The loss objective for optimization is a weighted sum of linear loss of the added new layer and non-linear loss of the last output layer. We modify the model structure of deep canonical correlation analysis (DCCA), i.e., adding a third semantic view to regularize text and image pairs and embedding the structure into our framework, for cross-modal retrieval tasks such as text-to-image search and image-to-text search. The experimental results show the performance of the modified model is better than similar state-of-art approaches on a dataset of National University of Singapore (NUS-WIDE). To validate the generalization ability of our framework, we apply our framework to RankNet, a ranking model optimized by stochastic gradient descent. Our method outperforms RankNet and converges more quickly, which indicates our progressive framework could provide a better and faster solution for deep neural networks.