Walnut oil is a functional wood oil known to researchers that may potentially be a large source of Chinese edible oils.There are various extraction methods for walnut oil,including traditional(pressing,solvent-and enz...Walnut oil is a functional wood oil known to researchers that may potentially be a large source of Chinese edible oils.There are various extraction methods for walnut oil,including traditional(pressing,solvent-and enzymeassisted extraction)and novel methods(microwave,ultrasound,supercritical CO_(2),subcritical and other extraction technologies).Walnut oil is rich in nutrients,including phytosterols,tocopherols,polyphenols,squalene and minerals.It provides many health benefits,such as antioxidant,antitumor,anti-inflammatory,antidiabetic and lipid metabolism-related functions.In addition,the authentication of walnut oil has received much research attention.The present review provides detailed research on walnut oil extraction,composition,health benefits and adulteration identification methods.The path toward further walnut oil improvement in the context of the market value of walnut oil is also discussed.展开更多
The hypersonic boundary-layer receptivity to slow acoustic waves is investigated for the Mach 6 flow over a 5-degree half-angle blunt cone with the nose radius of 5.08 mm. The plane acoustic wave interacts with the bo...The hypersonic boundary-layer receptivity to slow acoustic waves is investigated for the Mach 6 flow over a 5-degree half-angle blunt cone with the nose radius of 5.08 mm. The plane acoustic wave interacts with the bow shock, and generates all types of disturbances behind the shock, which may take various routes to generate the boundarylayer unstable mode. In this paper, two routes of receptivity are investigated in detail.One is through the disturbance in the entropy layer. The other is through the slow acoustic wave transmitted downstream the bow shock, which can excite the boundary-layer mode due to the synchronization mechanism. The results show that, for a low frequency slow acoustic wave, the latter route plays a leading role. The entropy-layer instability wave is able to excite the first mode near the neutral point, but its receptivity efficiency is much lower.展开更多
Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer....Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer. For super/hypersonic boundary layers, the external disturbances first interact with the shock ahead of the flying vehicles before entering the boundary layer. Since direct numerical simulation (DNS) is the only available tool for its comprehensive and detailed investigation, an important problem arises whether the numerical scheme, especially the shock-capturing method, can faithfully reproduce the interaction of the external disturbances with the shock, which is so far unknown. This paper is aimed to provide the answer. The interaction of weak disturbances with an oblique shock is investigated, which has a known theoretical solution. Numerical simulation using the shock-capturing method is conducted, and results are compared with those given by theoretical analysis, which shows that the adopted numerical method can faithfully reproduce the interaction of weak external disturbances with the shock.展开更多
The parabolized stability equation (PSE) method has been proven to be a useful and convenient tool for the investigation of the stability and transition problems of boundary layers. However, in its original formulat...The parabolized stability equation (PSE) method has been proven to be a useful and convenient tool for the investigation of the stability and transition problems of boundary layers. However, in its original formulation, for nonlinear problems, the complex wave number of each Fourier mode is determined by the so-called phase-locked rule, which results in non-self-consistency in the wave numbers. In this paper, a modification is proposed to make it self-consistent. The main idea is that, instead of allowing wave numbers to be complex, all wave numbers are kept real, and the growth or decay of each mode is simply manifested in the growth or decay of the modulus of its shape function. The validity of the new formulation is illustrated by comparing the results with those from the corresponding direct numerical simulation (DNS) as applied to a problem of compressible boundary layer with Mach number 6.展开更多
基金The authors would like to thank the National Natural Science Foundation of China Youth Foud(NO:32201947)Key R&D Program Projects of Shaanxi Province,China(NO:2022NY-003)for the financial support.
文摘Walnut oil is a functional wood oil known to researchers that may potentially be a large source of Chinese edible oils.There are various extraction methods for walnut oil,including traditional(pressing,solvent-and enzymeassisted extraction)and novel methods(microwave,ultrasound,supercritical CO_(2),subcritical and other extraction technologies).Walnut oil is rich in nutrients,including phytosterols,tocopherols,polyphenols,squalene and minerals.It provides many health benefits,such as antioxidant,antitumor,anti-inflammatory,antidiabetic and lipid metabolism-related functions.In addition,the authentication of walnut oil has received much research attention.The present review provides detailed research on walnut oil extraction,composition,health benefits and adulteration identification methods.The path toward further walnut oil improvement in the context of the market value of walnut oil is also discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.11472188 and11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘The hypersonic boundary-layer receptivity to slow acoustic waves is investigated for the Mach 6 flow over a 5-degree half-angle blunt cone with the nose radius of 5.08 mm. The plane acoustic wave interacts with the bow shock, and generates all types of disturbances behind the shock, which may take various routes to generate the boundarylayer unstable mode. In this paper, two routes of receptivity are investigated in detail.One is through the disturbance in the entropy layer. The other is through the slow acoustic wave transmitted downstream the bow shock, which can excite the boundary-layer mode due to the synchronization mechanism. The results show that, for a low frequency slow acoustic wave, the latter route plays a leading role. The entropy-layer instability wave is able to excite the first mode near the neutral point, but its receptivity efficiency is much lower.
基金supported by the National Natural Science Foundation of China(Nos.11472188 and11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer. For super/hypersonic boundary layers, the external disturbances first interact with the shock ahead of the flying vehicles before entering the boundary layer. Since direct numerical simulation (DNS) is the only available tool for its comprehensive and detailed investigation, an important problem arises whether the numerical scheme, especially the shock-capturing method, can faithfully reproduce the interaction of the external disturbances with the shock, which is so far unknown. This paper is aimed to provide the answer. The interaction of weak disturbances with an oblique shock is investigated, which has a known theoretical solution. Numerical simulation using the shock-capturing method is conducted, and results are compared with those given by theoretical analysis, which shows that the adopted numerical method can faithfully reproduce the interaction of weak external disturbances with the shock.
基金supported by the National Natural Science Foundation of China(Nos.11202147,11472188,11332007,11172203,and 91216111)the Specialized Research Fund(New Teacher Class)for the Doctoral Program of Higher Education(No.20120032120007)
文摘The parabolized stability equation (PSE) method has been proven to be a useful and convenient tool for the investigation of the stability and transition problems of boundary layers. However, in its original formulation, for nonlinear problems, the complex wave number of each Fourier mode is determined by the so-called phase-locked rule, which results in non-self-consistency in the wave numbers. In this paper, a modification is proposed to make it self-consistent. The main idea is that, instead of allowing wave numbers to be complex, all wave numbers are kept real, and the growth or decay of each mode is simply manifested in the growth or decay of the modulus of its shape function. The validity of the new formulation is illustrated by comparing the results with those from the corresponding direct numerical simulation (DNS) as applied to a problem of compressible boundary layer with Mach number 6.