期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A durable Ni/La-Y catalyst for efficient hydrogenation of γ-valerolactone into pentanoic biofuels 被引量:1
1
作者 Jiang He Lu Lin +8 位作者 Meng Liu caixia miao Zhijie Wu Rui Chen Shaohua Chen Tiehong Chen Yang Su Tao Zhang Wenhao Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期347-355,I0009,共10页
Zeolite-supported metal catalysts containing hydrogenation centers and acid sites are promising in the chemoselective hydrogenation of biomass platform molecules into value-added chemicals and fuels.The primary challe... Zeolite-supported metal catalysts containing hydrogenation centers and acid sites are promising in the chemoselective hydrogenation of biomass platform molecules into value-added chemicals and fuels.The primary challenge of employing such bifunctional catalysts for biomass conversion lies in catalyst stability in the liquid phase under harsh conditions. Herein, we have prepared a Ni/La-Y nanocatalyst via an improved wet impregnation method. Compared with Ni nanoparticles on H-Y, La addition shows a significantly enhanced stability and performance in the continuous liquid-phase hydrogenation of γ-valerolactone(GVL) into ethyl pentanoate(EP) at 200 ℃ for 1000 h. Complementary characterization studies reveal that La addition in the metal/zeolite catalyst not only efficiently modulates the acid property of the zeolite to alleviate coke formation, but also suppresses zeolite dealumination and metal agglomeration and leaching upon catalysis over a 1000 h period. These findings provide an efficient approach for improving the stability of zeolite-supported bifunctional catalysts, leading to potential application in hydrogen-assisted biomass valorization under the liquid-phase conditions. 展开更多
关键词 NICKEL ZEOLITE HYDROGENATION STABILITY BIOFUEL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部