Because mobile e-commerce is limited by the mobile terminal,network environment and other factors,accurate personalized recommendations become more and more important.We establish a large data intelligence platform,ai...Because mobile e-commerce is limited by the mobile terminal,network environment and other factors,accurate personalized recommendations become more and more important.We establish a large data intelligence platform,aiming at the characteristics of mobile e-commerce;we put forward a personalized recommendation model with implicit intention further.Firstly,create an intelligence unit with the virtual individual association set,virtual demand association set and virtual behavior associated set;Secondly,calculate the complex buying behavior prediction engine;Finally,give the predictive value of complex buying behavior.This method takes full account of factors such as hidden wishes perturbations that affect the predict of complex buying behavior,which to some extent solve a long-span composite purchasing behavior prediction.It shows that this method improves the purchasing behavior prediction accuracy effectively through experiments.展开更多
文摘Because mobile e-commerce is limited by the mobile terminal,network environment and other factors,accurate personalized recommendations become more and more important.We establish a large data intelligence platform,aiming at the characteristics of mobile e-commerce;we put forward a personalized recommendation model with implicit intention further.Firstly,create an intelligence unit with the virtual individual association set,virtual demand association set and virtual behavior associated set;Secondly,calculate the complex buying behavior prediction engine;Finally,give the predictive value of complex buying behavior.This method takes full account of factors such as hidden wishes perturbations that affect the predict of complex buying behavior,which to some extent solve a long-span composite purchasing behavior prediction.It shows that this method improves the purchasing behavior prediction accuracy effectively through experiments.