期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of 17β-Estradiol on Growth, Primary Metabolism, Phenylpropanoid-Flavonoid Pathways and Pathogen Resistance in Arabidopsis thaliana 被引量:1
1
作者 Pallavi Upadhyay camelia maier 《American Journal of Plant Sciences》 2016年第13期1693-1710,共19页
Mammalian sex hormones are spread in the environment from natural and anthropogenic sources. In the present study, the effect of estradiol on Arabidopsis thaliana growth primary metabolism, phenylpropanoid and flavono... Mammalian sex hormones are spread in the environment from natural and anthropogenic sources. In the present study, the effect of estradiol on Arabidopsis thaliana growth primary metabolism, phenylpropanoid and flavonoid pathways and pathogen resistance were investigated. Treatments of Arabidopsis plants with 10 and 100 nM 17β-estradiol resulted in enhanced root growth and shoot biomass. In addition, treated plants had an increased rate of photosynthesis with a concomitant increase in carbohydrate and protein accumulation. Plants exposed to higher concentrations of 17β-estradiol (10 μM) had significantly lower root growth, biomass, photosynthesis rate, primary metabolite and phenylpropanoid and flavonoid contents indicating a toxic effect of estradiol. Treatments with increasing estradiol concentrations (10 nM, 100 nM and 10 μM) resulted in the downregulation of phenylpropanoid-flavonoid pathway genes (PAL1, PAL4, CHI and ANS) and subsequent decreased accumulation of phenolics, flavonoids and anthocyanins. Estradiol-treated plants were inoculated with Pseudomonas syringae pv. Tomato DC3000 and basal resistance was determined. Estradiol treatments rendered plants susceptible to the pathogen, thus compromising the plant defense mechanisms. These results indicate that at low concentrations, estradiol functions as a biostimulant of growth, yield and primary metabolism of Arabidopsis. However, estradiol functions as a potential transcriptional regulator of the phenylpropanoid pathway genes in Arabidopsis, having a negative effect on the phenylpropanoid and flavonoid biosynthetic pathways. 展开更多
关键词 Plant Ecology Plant Physiology Plant Host-Pathogen Interactions
下载PDF
Alleviation of Drought Stress in Arabidopsis thaliana by 17β-Estradiol Application
2
作者 Pallavi Upadhyay camelia maier 《American Journal of Plant Sciences》 2016年第14期2072-2086,共15页
Animal steroidal hormones, including estrogens, are being introduced into the agricultural soil and water supply from increased pharmaceutical and farm waste. Considering the current levels of xenoestrogen contaminati... Animal steroidal hormones, including estrogens, are being introduced into the agricultural soil and water supply from increased pharmaceutical and farm waste. Considering the current levels of xenoestrogen contamination of plant environments in view of the climate change induced drought conditions, this study was designed to understand the effect of estradiol (ES) application on Arabidopsis drought stress responses. Estradiol treatment (10 nM, 100 nM) of plants subjected to drought stress conditions by withholding water for 7 days resulted in increased tolerance to drought stress reflected in the significantly higher plant survival rates of 74% and 78%, respectively compared to control plants’ survival rates of 36% (no treatment) and 40% (mock treatment). Estradiol application significantly increased the content of glutathione, proline and H<sub>2</sub>O<sub>2</sub> and significantly enhanced the transcription of the stress responsive genes GSTU3, GER5, HSP101, and HSP70b. A high concentration of ES (10 μM) did not protect plants against drought stress and proved to be toxic. These results provide new insight into the effect of ES on drought-stress responses in Arabidopsis with possible practical agricultural applications regarding the effect of environmental estrogens on crop plants. 展开更多
关键词 Arabidopsis Drought Stress GLUTATHIONE H2O2 PROLINE Stress Genes XENOESTROGENS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部